Article Open Access

Predictive Analysis of Potential Fraud in the Distribution of The Program Indonesia Pintar (PIP) Funds Using the Naïve Bayes and SVM Methods

Rizki Izandi Gumay, Sajarwo Anggai, Tukiyat Tukiyat

Abstract


The distribution of funds for The Indonesia Smart Program (Program Indonesia Pintar, or PIP), as a national education assistance program, faces serious challenges related to the potential for fraud that can harm the state and hinder the goal of equitable access to education. This study aims to develop a machine learning-based predictive model to detect potential fraud in the distribution of PIP funds by comparing two main algorithms, Naive Bayes and Support Vector Machine (SVM). The dataset used is the result of the integration of PIP and DAPODIK data in 2023, as well as additional features of engineering results based on the pattern of audit findings. All data, through preprocessing, normalization, and balancing processes, uses SMOTE to overcome class imbalances. The model was evaluated using accuracy, precision, recall, and F1-score metrics, both on internal and external test data from Banten Province. The results showed that SVMs with RBF kernel and optimal parameter tuning provided the best performance with an accuracy of up to 98.5% on test data. At the same time, Naive Bayes tended to be more sensitive to changes in data distribution in new data. Features such as recipient differences, budget checks, and stakeholder proposals have proven to be the leading indicators in detecting fraud. This study emphasizes the importance of external validation and regular model updates so that fraud detection systems remain adaptive to data dynamics in the field. The resulting model can be used as a tool for supervision and decision-making to prevent fraud in distributing education funds.


Keywords


Smart Indonesia Program, Fraud, Naive Bayes, Support Vector Machine, Machine Learning, SMOTE

References


I. Kusumawati et al., Pengantar Pendidikan. CV Rey Media Grafika, 2023.

N. Sufni, “Analisis Keberhasilan Program Kartu Indonesia Pintar (KIP) dalam Meningkatkan Akses Pendidikan di Indonesia,” Benefit J. Bussiness, Econ. Financ., vol. 2, no. 2, pp. 38–45, 2024.

B. G. Dimmera and P. D. Purnasari, “Permasalahan Dan Solusi Program Indonesia Pintar Dalam Mewujudkan Pemerataan Pendidikan Di Kabupaten Bengkayang,” Sebatik, vol. 24, no. 2, pp. 307–314, 2020.

J. Antoni, D. Candira, M. Istan, and others, “Implementasi Fraud Control Plan Dalam Pengelolaan Dana Bantuan Operasional Sekolah,” El-Idare J. Manaj. Pendidik. Islam, vol. 10, no. 2, pp. 126–135, 2024.

Gumay, R. I., & Anggai, S. (2023). Analisis dan Deteksi Risiko Fraud Pada Data Program Indonesia Pintar (PIP) Menggunakan Algoritma Machine Learning (Studi Kasus Penyaluran Dana PIP di Kab. Cianjur). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(2), 285–292.

Nur, A. M. (2022). Penerapan Metode Naïve Bayes Untuk Penentuan Penerima Beasiswa Program Indonesia Pintar (PIP) di SMAN 1 Sukamulia. Jurnal Informatika, 9(1), 1–8.

H. Manossoh, “Faktor-faktor penyebab terjadinya fraud pada pemerintah di Provinsi Sulawesi Utara,” J. EMBA J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 4, no. 1, 2016.

N. Aini, W. Handoko, and R. Nurhaliza, “Prediksi Penerimaan Bantuan Pip Pada Smks Al-Furqon Batubara Dengan Metode Naïve Bayes,” JUTSI J. Teknol. Dan Sist. Inf., vol. 4, no. 1, pp. 11–20, 2024.

I. Priyanto, E. M. Dewanti, T. Tundo, M. Nurdin, and R. Kasiono, “Penerapan Algoritma Metode Naïve Bayes Untuk Penentuan Penerimaan Bantuan Program Indonesia Pintar (PIP),” J. Manajamen Inform. Jayakarta, vol. 4, no. 2, pp. 162–172, 2024.

D. Kristianti and M. A. Hariyadi, “Support Vector Machine (SVM) dan Algoritma Na{"i}ve Bayes (NB) untuk mengklasifikasi keterlambatan pembayaran sumbangan pendidikan di Madrasah Ibtidaiyah,” J. Pendidik. Tambusai, vol. 6, no. 2, pp. 13468–13477, 2022.

I. A. Rahma and L. H. Suadaa, “Penerapan Text Augmentation untuk Mengatasi Data yang Tidak Seimbang pada Klasifikasi Teks Berbahasa Indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 6, pp. 1329–1340, 2023.

E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, 2022.

E. Edrial, R. Putrama, and A. Sujastiawan, “Evaluasi Kebijakan Program Indonesia Pintar (PIP) di SMA Negeri 1 Utan Tahun 2019-2020,” J. Kapita Sel. Adm. Publik, vol. 3, no. 1, pp. 109–116, 2022.

F. Uriyalita, “Evaluasi Program Indonesia Pintar (PIP) Telaah tentang Aksesibilitas, Pencegahan dan Penanggulangan Anak Putus Sekolah di Wilayah Urban Fringe Harjamukti, Cirebon,” S-2 Manajemen Pendidikan Islam, 2020.

E. Navira, “Pendeteksian Fraud Pada Pemerintahan Daerah Di Indonesia,” Universitas Lampung, 2023.

R. S. Y. Zebua et al., Fenomena Artificial Intelligence (AI). PT. Sonpedia Publishing Indonesia, 2023.

C. Carudin et al., Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia, 2024.

R. M. Sari, Klasifikasi Data Mining. Serasi Media Teknologi, 2024.

A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 452–458, 2023.

M. F. Al Fikri, A. Asrianda, and Z. Fitri, "Implementation Of The Adaboost Method on Linear Kernel SVM for Classifying Pip Assistance Recipients at SMP Negeri 2 Kejuruan Muda," in Proceedings of International Conference on Multidisciplinary Engineering (ICOMDEN), 2024, p. 25.

B. S. Larsen, "Synthetic minority over-sampling technique (SMOTE)," GitHub (https://github. com/dkbsl/matlab_smote/releases/tag/1.0), 2022.

C. Anam and H. B. Santoso, “Perbandingan Kinerja Algoritma C4. 5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa,” ENERGY J. Ilm. Ilmu-Ilmu Tek., vol. 8, no. 1, pp. 13–19, 2018.




DOI: https://doi.org/10.52088/ijesty.v5i4.982

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Rizki Izandi Gumay, Sajarwo Anggai, Tukiyat

International Journal of Engineering, Science, and Information Technology (IJESTY) eISSN 2775-2674