Performance of K-Nearest Neighbor Algorithm and C4.5 Algorithm in Classifying Citizens Eligible to Receive Direct Cash Assistance in Bandar Mahligai Village

Wan Amalia Chaliza Nur, Dahlan Abdullah, Rini Meiyanti

Abstract


Direct Cash Assistance, commonly called BLT, is one of the many programs the Indonesian government held to reduce the poverty rate of the Indonesian population. This study compares the KNN and C4.5 methods to determine the eligibility of residents eligible to receive Direct Cash Assistance in Bandar Mahligai Village. This study began with collecting resident data from the Bandar Mahligai village office. Then, the data obtained was taken into several attributes to be used in the classification process, namely the name of the head of the family, KK number, NIK, number of dependents, occupation, income, and monthly expenses. After the data is collected, the data will be classified using the KNN and C4.5 algorithms. There is a significant difference between the two algorithms in the classification process; the KNN algorithm by looking for the nearest neighbor data value, in this study, the K value = 9, while the C4.5 algorithm by building a decision tree from the attribute values taken based on resident data used as training data. The classification results of the two methods will be compared using a confusion matrix to obtain a higher accuracy technique. The results of testing using a confusion matrix for both algorithms are the accuracy produced by the KNN and C4.5 algorithms in classifying residents eligible for Direct Cash Assistance (BLT) of 90% in the system that has been built. The results of comparing the KNN and C4.5 algorithms for this study show that the KNN algorithm is better because the accuracy level reaches 90% in manual and system calculations. While the C4.5 method only gets 85% for the accuracy of its manual calculations, it receives an accuracy level of 90% in the system that has been built.


Keywords


KNN, Data Mining, C4.5, Algorithm, Classification

Full Text:

PDF

References


Ryanwar, “PENERAPAN METODE ALGORITMA C4 . 5 UNTUK MEMPREDIKSI LOYALITAS KARYAWAN PADA PT . XYZ BERBASIS WEB Laporan Skripsi Disusun oleh :,” 2020.

S. S. Prihatin, P. D. Atika, and Herlawati, “Sistem Informasi Pemilihan Peserta Program Indonesia Pintar ( PIP ) Dengan Metode K-Nearest Neighbor pada SD Negeri Pejuang V Kota Bekasi,” vol. 2, no. 2, pp. 165–176, 2021.

Rizal, H. A.-K. Aidilof, and W. Kuriniawan, “KLASIFIKASI BERITA OLAHRAGA PADA PORTAL BERITA ONLINE DENGAN METODE K-NEAREST NEIGHBOUR ( KNN ) DAN LEVENSHTEIN DISTANCE,” pp. 366–384.

A. M. Hasibuan, “BANTUAN PROGRAM KELUARGA HARAPAN,” 2021.

A. Widhianty et al., “Perancangan Sistem Informasi Keuangan Dalam Penyaluran Bantuan Langsung Tunai Dana Desa (BLT-DD) Desa Cikuya Tahun Anggaran 2021 Berbasis Visual Basic,” vol. 10, no. 1, 2023.

J. S. Pasaribu, “Development of a Web Based Inventory Information System,” Int. J. Eng. Sci. InformationTechnology, vol. 1, no. 2, pp. 24–31, 2021, doi: 10.52088/ijesty.v1i2.51.

R. Mirsa, M. Muhammad, E. Saputra, and I. Farhana, “Space Pattern of Samudera Pasai Sultanate,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 2, 2021, doi: 10.52088/ijesty.v1i2.120.

A. Razi, “KLASIFIKASI PENERIMA BEASISWA ACEH CARONG ( ACEH PINTAR ) DI UNIVERSITAS MALIKUSSALEH MENGGUNAKAN ALGORITMA KNN ( K-NEAREST NEIGHBORS ),” vol. 7, no. 1, pp. 79–84, 2022.

A. M. H. Pardede et al., “Digital Image Security Application With Arnold Cat Map (ACM),” J. Phys. Conf. Ser., 2018, doi: 10.1088/1742-6596/1114/1/012059.

D. Riyan Rizaldi, E. Nurhayati, Z. Fatimah, and Z. Amni, “The Importance of Parental Assistance in Supervising the Use of Technology for Children During the Home Learning Program,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 3, 2021, doi: 10.52088/ijesty.v1i3.78.

F. Shidiq, E. W. Hidayat, N. I. Kurniati, and S. Artikel, “Innovation in Research of Informatics ( INNOVATICS ) Penerapan Metode K-Nearest Neighbor ( KNN ) Untuk Menentukan Ikan Cupang Dengan Ekstraksi Fitur Ciri Bentuk Dan Canny,” vol. 2, pp. 39–46, 2021.

D. Abdullah and C. I. Erliana, “Model of Ict Goods Inventory Clustering Application Using K-Means Method,” ?lkö?retim Online, vol. 20, no. 1, pp. 1128–1132, 2021, doi: 10.17051/ilkonline.2021.01.116.

A. D. Malik, “Jurnal teknoinfo,” vol. 17, pp. 236–243, 2023.

R. Aryanto, M. A. Rosid, and S. Busono, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Akasara Lota,” J. Inf. dan Teknol., vol. 5, no. 1, pp. 258–264, 2023, doi: 10.37034/jidt.v5i1.313.

A. Muis, Sulistyawati, and A. Z. Arifin, “Pengaruh Pemberian Kombinasi Pupuk NPK dan Pupuk Kandang Sapi Terhadap Pertumbuhan dan Hasil Tanaman Sorgum (Sorghum bicolor L.),” Agroteknologi Merdeka Pasuruan, vol. 2, no. 2, 2018.

X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., 2008, doi: 10.1007/s10115-007-0114-2.

Y. R. Amelia, “Penerapan data mining untuk prediksi penjualan produk elektronik terlaris menggunakan metode k-nearest neighbor,” 2018.

C. I. E. Dahlan Abdullah, “Sistem informasi pendataan kendaraan hilang berbasis web pada polres binjai 1,” Sist. Inf. pendataan kendaraan hilang Berbas. web pada polres binjai 1, 2016.

A. Deviyanto, “PENERAPAN ANALISIS SENTIMEN PADA PENGGUNA TWITTER,” vol. 3, no. 1, pp. 1–13, 2018.

M. Iqbal et al., “Design of Decision Support System Determination of Inventory Inventory Using Single Exponential Smoothing Forecasting Method,” J. Phys. Conf. Ser., 2018, doi: 10.1088/1742-6596/1114/1/012082.

D. Hartama et al., “A research framework of disaster traffic management to Smart City,” 2018, doi: 10.1109/IAC.2017.8280607.




DOI: https://doi.org/10.52088/ijesty.v5i1.752

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Wan Amalia Chaliza Nur, Dahlan Abdullah, Rini Meiyanti

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674