Sentiment Analysis of User Reviews on BSI Mobile and Action Mobile Applications on the Google Play Store Using Multinomial Naive Bayes Algorithm
Abstract
Mobile banking services are designed to facilitate customer transactions. Bank Syariah Indonesia (BSI) and Bank Aceh also provide these online services through their respective applications, BSI Mobile and Action Mobile. The mobile banking apps aim to simplify customer transactions, which can be conducted remotely via several features, from transfers, payments, and purchases to zakat payments, by simply connecting to the internet. Therefore, this research aims to classify the sentiment of user reviews for BSI Mobile and Action Mobile applications on Google Play Store to understand the users' experiences. The Multinomial Naïve Bayes algorithm is used in this study, where the algorithm analyzes and classifies the user reviews into positive and negative sentiment categories. The study involves several stages, such as text preprocessing, sentiment visualization, splitting the data into an 80:20 ratio for training and testing datasets, and training the model using the Multinomial Naïve Bayes algorithm. The results of this study show that the Multinomial Naïve Bayes algorithm performs well in analyzing user sentiment for BSI Mobile and Action Mobile, achieving an accuracy of 78.7%, precision of 76.5%, recall of 86.2%, and an F1-score of 80.6% for BSI Mobile, and an accuracy of 85.6%, precision of 75%, recall of 75%, and an F1-score of 75% for Action Mobile. Additionally, the sentiment classification results reveal that 52.8% of BSI Mobile user reviews are positive and 47.2% are negative, while for Action Mobile, 35.1% are positive and 64.9% are negative. For BSI Mobile, 21,497 reviews express a positive sentiment with dominant keywords such as "updated," "good," "balance," "transaction," and "thank." Meanwhile, for Action Mobile, 274 reviews express a negative sentiment with dominant keywords such as "transaction," "application," "network," "register," "please," and "update."
Keywords
Full Text:
PDFReferences
N. A. Fibriyanti, N. Sulistiyowati, and T. N. Padilah, “IMPLEMENTASI ALGORITMA MULTINOMIAL NAIVE BAYES PADA ANALISIS SENTIMEN TERHADAP ULASAN PENGGUNA APLIKASI BRIMO,” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 3, pp. 1817–1822, 2023.
D. Pangestu, “Analisis Kepuasan Nasabah dalam Penggunaan BSI Mobile,” JURNAL MUAMALAT INDONESIA, vol. 2, no. 2, pp. 72–86, Oct. 2022, doi: 10.26418/jmi.v2i2.58961.
N. L. P. Merawati, A. Z. Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 123–131, Feb. 2021, doi: 10.29207/resti.v5i1.2587.
J. Winahyu and I. Suharjo, “Aplikasi Web Analisis Sentimen Dengan Algoritma Multinomial Naïve Bayes,” Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika (KARMAPATI), vol. 10, no. 2, pp. 206–214, 2021.
H. Aulia Rahman, R. Santoso, and T. Widiharih, “Analisis Sentimen Pada Perusahaan Penyedia Jasa Logistik J&T Menggunakan Algoritma Multinomial Naive Bayes dan Support Vector Machine,” Jurnal Gaussian, vol. 12, no. 2, pp. 242–253, Jul. 2023, doi: 10.14710/j.gauss.12.2.242-253.
F. Eka Purwiantono and A. Aditya, “KLASIFIKASI SENTIMEN SARA, HOAKS DAN RADIKAL PADA POSTINGAN MEDIA SOSIAL MENGGUNAKAN ALGORITMA NAIVE BAYES MULTINOMIAL TEXT,” Jurnal TEKNOKOMPAK, vol. 14, no. 2, pp. 68–73, 2020.
R. R. Putra, M. E. Johan, and E. R. Kaburuan, “A naïve bayes sentiment analysis for fintech mobile application user review in Indonesia,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 5, pp. 1856–1860, Sep. 2019, doi: 10.30534/ijatcse/2019/07852019.
B. Andrian, T. Simanungkalit, I. Budi, and A. F. Wicaksono, "Sentiment Analysis on Customer Satisfaction of Digital Banking in Indonesia," International Journal of Advanced Computer Science and Applications, vol. 13, no. 3, pp. 466–473, 2022, doi: 10.14569/IJACSA.2022.0130356.
A. A. Farisi, Y. Sibaroni, and S. Al Faraby, "Sentiment analysis on hotel reviews using Multinomial Naïve Bayes classifier," J Phys Conf Ser, vol. 1192, no. 1, pp. 1–10, May 2019, doi: 10.1088/1742-6596/1192/1/012024.
N. S. Wardani, A. Prahutama, and P. Kartikasari, “ANALISIS SENTIMEN PEMINDAHAN IBU KOTA NEGARA DENGAN KLASIFIKASI NAÏVE BAYES UNTUK MODEL BERNOULLI DAN MULTINOMIAL,” Jurnal Gaussian, vol. 9, no. 3, pp. 237–246, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
R. Refianti and N. Anggraeni, "Sentiment Analysis Using Convolutional Neural Network Method to Classify Reviews on Zoom Cloud Meetings Application Based on Reviews on Google Playstore," International Journal of Engineering, Science and Information Technology, vol. 3, no. 3, pp. 7–16, Sep. 2023, doi: 10.52088/ijesty.v3i3.463.
M. O. Syahputra, B. Bustami, and L. Rosnita, "Analysis of Public Sentiment Towards Celebrity Endorsment On Social Media Using Support Vector Machine," International Journal of Engineering, Science and Information Technology, vol. 4, no. 3, pp. 118–127, Sep. 2024, doi: 10.52088/ijesty.v4i3.543.
M. Faisal, N. Nurdin, and Z. Fitri, "Information and Communication Technology Competencies Clustering for students for Vocational High School Students Using K-Means Clustering Algorithm," International Journal of Engineering, Science & Information Technology (IJESTY), vol. 2, no. 3, pp. 111–120, Jul. 2022, doi: 10.52088/ijesty.v1i4.318.
S. Shibul Muna, N. Nurdin, and Taufiq, "Tokopedia and Shopee Marketplace Performance Analysis Using Metrix Google Lighthouse," International Journal of Engineering, Science & Information Technology (IJESTY), vol. 2, no. 3, pp. 106–110, Jul. 2022, doi: 10.52088/ijesty.v1i4.312.
M. Fikry et al., "Data Mining for Processing of Research and Community Service by Lecturer Using Decision Tree Method," International Journal of Psychosocial Rehabilitation, vol. 24, no. 2, pp. 367–371, Mar. 2020.
M. Maulita and N. Nurdin, “PENDEKATAN DATA MINING UNTUK ANALISA CURAH HUJAN MENGGUNAKAN METODE REGRESI LINEAR BERGANDA (STUDI KASUS: KABUPATEN ACEH UTARA),” Idealis : Indonesia Journal Information System, vol. 6, no. 2, pp. 99–106, Jul. 2023, [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/- indexMayaMaulita|http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index|
Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Jurnal Edik Informatika, vol. 2, no. 2, pp. 213–219, 2016.
Samsir, Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 5, no. 1, pp. 157–163, Jan. 2021.
N. Fitriyah, B. Warsito, and D. A. I Maruddani, “ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM),” JURNAL GAUSSIAN, vol. 9, no. 3, pp. 376–390, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
D. A. Agustina and D. Krisnaningsih, “PENGARUH PENGGUNAAN BSI MOBILE TERHADAP KEPUASAN NASABAH DI BSI CABANG JENGGOLO,” Jurnal Tabarru’ : Islamic Banking and Finance, vol. 6, no. 1, pp. 179–191, 2023.
Z. Irwanda, “Aplikasi Mobile Banking Bank Aceh Syariah (Action) Studi Persepsi Pada Generasi Milenial,” UIN AR-RANIRY, 2022.
N. Nurdin, M. Rizki, and Maryana, “ANALISA DATA MINING DALAM MEMPREDIKSI MASYARAKAT KURANG MAMPU MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, pp. 1090–1098, Apr. 2024, doi: 10.23960/jitet.v12i2.4131.
DOI: https://doi.org/10.52088/ijesty.v4i4.581
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Brucel Duta Samudera, Nurdin, Hafizh Al Kautsar Aidilof