Sentiment Analysis of Google Maps User Reviews on the Play Store Using Support Vector Machine and Latent Dirichlet Allocation Topic Modeling
Abstract
These days, traveling is made easier by utilizing easily accessible online directions such as Google Maps. Google Maps provides real-time routes by displaying and presenting the closest routes that users can take. However, lately, the routes provided by Google Maps services often get users lost by presenting routes such as forests, narrow roads, and even dead ends. Therefore, this study aims to determine the level of user satisfaction and sentiment into two categories, namely positive and negative, based on reviews on the Google Play Store platform using the Support Vector Machine (SVM) algorithm and topic modeling using Latent Dirichlet Allocation (LDA) to find out the collection of topics that are the main topics of conversation by users regarding Google Maps services. The results of this study show that the SVM algorithm is feasible to use in sentiment analysis classification with an accuracy value of 86%, precision of 93%, recall of 53%, and f1-score of 52%. In addition, topic modeling is applied to generate coherence values for each topic, which shows that the higher the coherence value, the more specific the topic is. The highest coherence value generated in this study was two topic models with a coherence value of 35.15%, but this study took five with a coherence value of 33.39%. The five topic models to be applied in this study are selected because they have a good enough coherence value to identify the main topics and hidden topics in Google Maps user reviews with the Latent Dirichlet Allocation model. The topic model shows five aspects users often discuss: Google Maps route accuracy, system and service errors, navigation application directions, lost time history, and convoluted route provision.
Keywords
Full Text:
PDFReferences
A. Rifa’i, H. Sujaini, and D. Prawira, “Sentiment Analysis Objek Wisata Kalimantan Barat Pada Google Maps Menggunakan Metode
Naive Bayes,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 3, p. 400, 2021, doi: 10.26418/jp.v7i3.48132.
W. Khofifah, D. N. Rahayu, and A. M. Yusuf, “Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps,” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 16, no. 4, pp. 28–38, 2022, doi: 10.35969/interkom.v16i4.192.
V. W. D. Thomas and F. Rumaisa, “Analisis Sentimen Ulasan Hotel Bahasa Indonesia Menggunakan Support Vector Machine dan
TF-IDF,” Jurnal Media Informatika Budidarma, vol. 6, no. 3, p. 1767, 2022, doi: 10.30865/mib.v6i3.4218.
R. Rosdiana, M. Ula, and H. A. K. Aidilof, “Implementasi Pemodelan Citra Model Svm (Support Vector Machine) Dalam Penentuan Pengklasifikasian Jenis Suara Kontes Burung,” Jurnal Informatika Kaputama (JIK), vol. 5, no. 2, pp. 317–324, 2021, doi: 10.59697/jik.v5i2.264.
B. A. Tondang, Muhammad Rizqan Fadhil, Muhammad Nugraha Perdana, Akhmad Fauzi, and Ugra Syahda Janitra, “Analisis pemodelan topik ulasan aplikasi BNI, BCA, dan BRI menggunakan latent dirichlet allocation,” INFOTECH : Jurnal Informatika & Teknologi, vol. 4, no. 1, pp. 114–127, 2023, doi: 10.37373/infotech.v4i1.601.
L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 154–161, 2020, doi: 10.33096/ilkom.v12i2.597.154-161.
A. D. Cahyani, “Analisa Kinerja Metode Support Vector Machine untuk Analisa Sentimen Ulasan Pengguna Google Maps,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 3, pp. 604–613, 2023, doi: 10.47065/josyc.v4i3.3426.
I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.
M. Ula and S. Fachrurrazi, “Analisis Sentimen Cyberbullying pada Media Sosial Twitter menggunakan Metode Support Vector Machine dan Naïve Bayes Classifier,” TECHSI - Jurnal Teknik Informatika, vol. 14, no. 2, p. 91, 2023, doi: 10.29103/techsi.v14i2.12103.
M. Chen, Z. Guo, K. Abbass, and W. Huang, “Analysis of the impact of investor sentiment on stock price using the latent dirichlet allocation topic model,” Front Environ Sci, vol. 10, pp. 82–87, 2022, doi: 10.3389/fenvs.2022.1068398.
[11]F. J. Damanik and D. B. Setyohadi, “Analysis of public sentiment about COVID-19 in Indonesia on Twitter using multinomial naive bayes and support vector machine,” IOP Conf Ser Earth Environ Sci, vol. 704, no. 1, 2021, doi: 10.1088/1755-1315/704/1/012027.
Riyanto and A. Azis, “Application of the Vector Machine Support Method in Twitter Social Media Sentiment Analysis Regarding the Covid-19 Vaccine Issue in Indonesia,” Journal of Applied Data Sciences, vol. 2, no. 3, pp. 102–108, 2021, doi: 10.47738/jads.v2i3.40.
M. Erkamim, “Sentiment Analysis of Shopee App Reviews Using Random Forest and Support Vector Machine,” Jurnal Prodi Teknik Informatika FIK Universitas Muslim Indonesia, vol. 15, no. 3, pp. 427–435, 2023, doi: https://doi.org/10.33096/ilkom.v15i3.1610.427- 435.
M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES Journal of Mathematics, vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm
Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Pada Supermarket Sejahtera Lhokseumawe,” Techsi, vol. 6, no. 1, pp. 134–155, 2015, doi: 10.29103/TECHSI.V7I1.184.
H. Nuraliza, O. N. Pratiwi, and F. Hamami, “Analisis Sentimen IMBd Film Review Dataset Menggunakan Support Vector Machine (SVM) dan Seleksi Feature Importance,” Jurnal Mirai Manajemen, vol. 7, no. 1, pp. 1–17, 2022, doi: https://doi.org/10.37531/mirai.v7i1.2222.
M. Faisal and Z. Fitri, “Information and Communication Technology Competencies Clustering for students for Vocational High School Students Using K-Means Clustering Algorithm,” International Journal of Engineering, Science & InformationTechnology (IJESTY), pp. 111–120, 2022, doi: 10.52088/ijesty.v1i4.318.
M. Qamal et al., “ANALISIS SENTIMEN TOKO ONLINE MENGGUNAKAN dilakukan oleh Mehdi Mursalat Ismail dan Kemas Muslim Lhaksamana dengan judul ‘ Sen timen Analisis Pada Media Online Mengenai Pemilihan Presisen 2019 dengan Menggunakan Metode Naive Bayes ’,” Jurnal Teknologi Terapan and Sains 4.0, vol. 2, no. 3, pp. 642–650, 2021, doi: DOI: https://doi.org/10.29103/tts.v2i3.6771.
J. Quillo-Espino, R. M. Romero-González, and A. Lara-Guevara, “Advantages of Using a Spell Checker in Text Mining Pre-Processes,” Journal of Computer and Communications, vol. 06, no. 11, pp. 43–54, 2018, doi: 10.4236/jcc.2018.611004.
U. Umarrazi and N. Nurdin, “Peramalan J Umlah Keuntungan Mi E I Nstan Pada Sumber Rezeki Kota Lhokseumawe Menggunakan Metode Tri Ple Exponenti Al Smooti Ng,” Sisfo: Jurnal Ilmiah Sistem Informasi, vol. 1, no. 2, pp. 185–218, 2017, doi: 10.29103/sisfo.v1i2.248.
R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” Jurnal Informatika, vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.
S. Shibul Muna, Nurdin and Taufiq “Tokopedia and Shopee Marketplace Performance Analysis Using Metrix Google Lighthouse,”
International Journal of Engineering, Science & InformationTechnology (IJESTY), pp. 106–110, 2022, doi: 10.52088/ijesty.v1i4.312.
N. Nurdin, M. Suhendri, Y. Afrilia, and R. Rizal, “Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naïve Bayes Classifier (NBC),” Sistemasi, vol. 10, no. 2, pp. 268–279, 2021, doi: 10.32520/stmsi.v10i2.1193.
K. B. Putra and R. P. Kusumawardani, “Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA),” Jurnal Teknik ITS, vol. 6, no. 2, pp. 4–9, 2017, doi: 10.12962/j23373539.v6i2.23205.
DOI: https://doi.org/10.52088/ijesty.v4i4.580
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Violita Aditya Zahrah, Nurdin, Risawandi