Design and Development of a Coffee Bean Selector Using The Yolo Algorithm
Abstract
The enjoyment of brewed coffee is determined by many things, one of which is choosing quality coffee beans and coffee powder. Quality coffee beans are determined by shape and size (full, half full, or damaged). Checking the size and shape of coffee beans manually is subject to external influences such as fatigue, environment, light, etc. With the help of technologyimage processing, these factors can be overcome. Through this paper a tool is designed to detect coffee defects using the Yolo algorithm. The designed system consists of a camera that captures images of coffee beans which are then processed by the Raspberry Pi and the results are displayed on the laptop screen. Detection results using the YOLO algorithm for 10 trials using 100 coffee beans get an average percentage value of 76.54% for the perfect coffee bean category of 43 coffee beans, then the average percentage of imperfect coffee beans is 73.40% with lots of 48 3 coffee beans and coffee beans were not detected with an average percentage value of 1% and coffee beans included in the two categories were 6 coffee beans with an average percentage value of 19.8%. In this study the YOLO algorithm can maintain an accuracy rate of detection success of 75%.
Keywords
Full Text:
PDFReferences
Y. Kansrini, D. Febrimeli, and P. W. Mulyani, “Tingkat Adopsi Budidaya Yang Baik (Good Agriculture Practices) Tanaman Kopi Arabika Oleh Petani Di Kabupaten Tapanuli Selatan,†Paradig. Agribisnis, vol. 3, no. 1, p. 36, 2020, doi: 10.33603/jpa.v3i1.3957.
E. Winarni, R. D. Ratnani, and I. Riwayati, “Pengaruh jenis pupuk organik terhadap pertumbuhan tanaman kopi,†Momentum, vol. 9, no. 1, pp. 35–39, 2013.
M. GarcÃa, J. E. Candelo-Becerra, and F. E. Hoyos, “Quality and defect inspection of green coffee beans using a computer vision system,†Appl. Sci., vol. 9, no. 19, 2019, doi: 10.3390/app9194195.
A. Fatih, “Desain dan simulasi mesin sortir biji kopi kering dengan sistem gerakan engkol,†J. Crankshaft, vol. 4, no. 1, pp. 19–28, 2021, doi: 10.24176/crankshaft.v4i1.5901.
M. Azhad, “Vehicle Detection and Tracking using YOLO and DeepSORT,†pp. 23–29, 2021.
I. P. Idehen et al., “Development and Testing of a 5G Multichannel Intelligent Seismograph Based on Raspberry Pi,†2022.
N. Rosniar, I. Perdana, and S. F. Hamama, “Klasifikasi Jenis Serangga dan Peranannya pada Tanaman Kopi di Kampung Kenawat – Bener Meriah,†Semin. Nas. Multi Disiplin Ilmu UNAYA, pp. 264–272, 2019.
Standar Nasional Indonesia, “Biji kopi,†2008.
A. U. Fisik, “Standart umum pengujian mutu pada biji kopi,†pp. 1–23.
W. Liu et al., “SSD : Single Shot MultiBox Detector.â€
M. L. Aziz, “Perancangan Sistem Deteksi Objek Secara Real-Time Menggunakan Metode YOLO pada Robot AL-Mubarok_MK4,†vol. 2020, p. 196, 2020.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once : Unified , Real-Time Object Detection.â€
“Mengenal Teknologi Artificial Intelligence, Machine Learning, dan Deep Learning - PDF Free Download.pdf.†.
S. Song, T. Liu, H. Wang, B. Hasi, C. Yuan, and F. Gao, “Using Pruning-Based YOLO v3 Deep Learning Algorithm for Accurate Detection of Sheep Face,†pp. 1–16, 2022.
C. R. Gunawan, N. Nurdin, and F. Fajriana, “Design of A Real-Time Object Detection Prototype System with YOLOv3 (You Only Look Once),†Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 3, pp. 96–99, 2022, doi: 10.52088/ijesty.v2i3.309.
F. Hutter, Automated Machine Learning. .
S. Permana, M. Andriani, and D. Dewiyana, “Production Capacity Requirements Planning Using The Capacity Method Requirement Planning,†Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 4, 2021, doi: 10.52088/ijesty.v1i4.165.
A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,†IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.
M. R. Saxena, A. Pathak, A. P. Singh, and I. Shukla, “Real time object detection using machine,†vol. 11, no. 1, pp. 16–19, 2019.
A. Gabelly and F. Pradana, “WEB GUI UNTUK MENGONTROL TIRAI,†pp. 6–11.
J. Ali, “SISTEM SECURITY WEBCAM DENGAN MENGGUNAKAN MICROSOFT VISUAL,†vol. 1, no. 2, pp. 46–58, 2016.
D. N. Zuraidah, M. F. Apriyadi, A. R. Fatoni, M. Al Fatih, and Y. Amrozi, “Menelisik Platform Digital Dalam Teknologi Bahasa Pemrograman,†Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 11, no. 2, pp. 1–6, 2021, doi: 10.36350/jbs.v11i2.107.
M. Mahasin and I. A. Dewi, “Comparison of CSPDarkNet53, CSPResNeXt-50, and EfficientNet-B0 Backbones on YOLO V4 as Object Detector,†Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 3, pp. 64–72, 2022, doi: 10.52088/ijesty.v2i3.291.
DOI: https://doi.org/10.52088/ijesty.v2i4.331
Article Metrics
Abstract view : 65 timesPDF - 28 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Raihan Putri, Rizkan Tiara