Article Open Access

Effects of Curing Conditions and Combined Pozzolanic Material on Compressive Strength of Reactive Powder Concrete

Said Jalalul Akbar, Yulius Rief Alkhaly, Maizuar Maizuar, M Ibnu H F Harahap

Abstract


Reactive Powder Concrete (RPC) is a type of concrete with an extremely dense matrix and high compressive strength. The compressive strength of RPC was examined in this study to evaluate the effects of the combination of silica fume (SF) and rice husk ash (RHA) with up to 50% by weight of cement, which provided the highest compressive strength and low cement content under normal curing and steam curing methods. The results showed that the combination of 5% SF or 10% SF with 25% - 45% RHA reaches compressive strength over 100 MPa at the age of 28 days with a low cement content of about 650 kg/m3 under both curing conditions and maintains the slump flow more than 200 mm. This study demonstrates that SF and RHA can be used up to 50% by weight of cement to produce RPC with a compressive strength of over 100 MPa.


Keywords


Reactive Powder Concrete, Silica Fume, Rice Husk Ash, Compressive Strength, Normal and Steam Curing

References


S. Ahmad, A. K. Azad, and K. F. Loughlin, “Effect of the Key Mixture Parameters on Tortuosity and Permeability of Concrete,” J. Adv. Concr. Technol., vol. 10, no. 3, pp. 86–94, Mar. 2012, https://doi.org/10.3151/jact.10.86.

P. Richard and M. Cheyrezy, “Composition of Reactive Powder Concretes,” Cem. Concr. Res., vol. 25, no. 7, pp. 1501–1511, Apr. 1995. https://doi.org/10.1016/0008-8846(95)00144-2.

M. Á. Sanjuán, C. Argiz, J. C. Gálvez, and A. Moragues, “Effect of silica fume fineness on the improvement of Portland cement strength performance,” Constr. Build. Mater., vol. 96, pp. 55–64, Oct. 2015, https://doi.org/10.1016/j.conbuildmat.2015.07.092.

L. Hu, Z. He, Y. Shao, X. Cai, and S. Zhang, “Microstructure and properties of sustainable cement-based materials using combus-tion treated rice husk ash,” Constr. Build. Mater., vol. 294, p. 123482, Aug. 2021, https://doi.org/10.1016/j.conbuildmat.2021.123482.

A. S. Faried, S. A. Mostafa, B. A. Tayeh, and T. A. Tawfik, “The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties,” Constr. Build. Mater., vol. 290, p. 123279, Jul. 2021, https://doi.org/10.1016/j.conbuildmat.2021.123279.

N. Van Tuan, G. Ye, K. Van Breugel, and O. Copuroglu, “Hydration and microstructure of ultra-high performance concrete incor-porat-ing rice husk ash,” Cem. Concr. Res., vol. 41, no. 11, pp. 1104–1111, Nov. 2011, https://doi.org/10.1016/j.cemconres.2011.06.009.

P. V. Rambabu, J. G. Varma, and G. V. R. Rao, “Durability Study on Rice Husk Ash for Optimum Level of Replacement of Ce-ment in Concrete,” Int. J. Eng. Trends Technol., vol. 28, no. 3, pp. 144–149, Oct. 2015, https://doi.org/10.14445/22315381/IJETT-V28P228.

E. Aprianti, P. Shafigh, S. Bahri, and J. N. Farahani, “Supplementary cementitious materials origin from agricultural wastes – A re-view,” Constr. Build. Mater., vol. 74, pp. 176–187, Jan. 2015, https://doi.org/10.1016/j.conbuildmat.2014.10.010.

M. Jamil, M. N. N. Khan, M. R. Karim, A. B. M. A. Kaish, and M. F. M. Zain, “Physical and chemical contributions of Rice Husk Ash on the properties of mortar,” Constr. Build. Mater., vol. 128, pp. 185–198, Dec. 2016, https://doi.org/10.1016/j.conbuildmat.2016.10.029.

Z. Zhang, S. Liu, F. Yang, Y. Weng, and S. Qian, “Sustainable high strength, high ductility engineered cementitious composites (ECC) with substitution of cement by rice husk ash,” J. Clean. Prod., vol. 317, p. 128379, Oct. 2021, https://doi.org/10.1016/j.jclepro.2021.128379.

H. Huang, X. Gao, H. Wang, and H. Ye, “Influence of rice husk ash on strength and permeability of ultra-high-performance con-crete,” Constr. Build. Mater., vol. 149, pp. 621–628, Sep. 2017, https://doi.org/10.1016/j.conbuildmat.2017.05.155.

A. S. Gill and R. Siddique, “Strength and micro-structural properties of self-compacting concrete containing metakaolin and rice husk ash,” Constr. Build. Mater., vol. 157, pp. 51–64, Dec. 2017, https://doi.org/10.1016/j.conbuildmat.2017.09.088.

G. Long, Y. Shi, K. Ma, and Y. Xie, “Reactive powder concrete reinforced by nanoparticles,” Adv. Cem. Res., vol. 28, no. 2, pp. 99–109, Feb. 2016, https://doi.org/10.1680/jadcr.15.00058.

Y. R. Alkhaly, Abdullah, Husaini, and M. Hasan, “The Design of Reactive Powder Concrete (RPC) Mixtures Using Aceh Quartz-ite Powder,” Key Eng. Mater., vol. 892, pp. 43–50, Jul. 2021, https://doi.org/10.4028/www.scientific.net/KEM.892.43.

J.-S. Park, Y. Kim, J.-R. Cho, and S.-J. Jeon, “Early-Age Strength of Ultra-High Performance Concrete in Various Curing Condi-tions,” Materials, vol. 8, no. 8, pp. 5537–5553, Aug. 2015, https://doi.org/10.3390/ma8085261.

A. A. Dhundasi and R. B. Khadiranaikar, “Effect of Curing Conditions on Mechanical Properties of Reactive Powder Concrete with Different Dosage of Quartz Powder,” in Sustainable Construction and Building Materials, vol. 25, B. B. Das and N. Neithalath, Eds., in Lecture Notes in Civil Engineering, vol. 25. , Singapore: Springer Singapore, 2019, pp. 359–368. https://doi.org/10.1007/978-981-13-3317-0_33.

H. Yaz?c?, E. Deniz, and B. Baradan, “The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete,” Constr. Build. Mater., vol. 42, pp. 53–63, May 2013, https://doi.org/10.1016/j.conbuildmat.2013.01.003.

M. S. Nasr et al., “Utilization of High-Volume Fraction of Binary Combinations of Supplementary Cementitious Materials in the Pro-duction of Reactive Powder Concrete,” Period. Polytech. Civ. Eng., Nov. 2020, https://doi.org/10.3311/PPci.16242.

M. Vigneshwari, K. Arunachalam, and A. Angayarkanni, “Replacement of silica fume with thermally treated rice husk ash in Re-active Powder Concrete,” J. Clean. Prod., vol. 188, pp. 264–277, Jul. 2018, https://doi.org/10.1016/j.jclepro.2018.04.008.

N. Van Tuan, G. Ye, K. Van Breugel, A. L. A. Fraaij, and D. D. Bui, “The study of using rice husk ash to produce ultra high per-for-mance concrete,” Constr. Build. Mater., vol. 25, no. 4, pp. 2030–2035, Apr. 2011, https://doi.org/10.1016/j.conbuildmat.2010.11.046.

Y. R. Alkhaly, Abdullah, Husaini, and M. Hasan, “The effect of synthesized rice husk ash to compressive strength of reactive powder concrete containing quartzite powder,” presented at the The 3rd International Conference on Physical Instrumentation and Advanced Materials (ICPIAM) 2021, Jember – East Java, Indonesia, 2022, p. 050002. https://doi.org/10.1063/5.0108635.

M. Nili and A. Ehsani, “Investigating the effect of the cement paste and transition zone on strength development of concrete con-taining nanosilica and silica fume,” Mater. Des., vol. 75, pp. 174–183, Jun. 2015, https://doi.org/10.1016/j.matdes.2015.03.024.

J. J. Chen, P. L. Ng, L. G. Li, and A. K. H. Kwan, “Production of High-performance Concrete by Addition of Fly Ash Micro-sphere and Condensed Silica Fume,” Procedia Eng., vol. 172, pp. 165–171, 2017, https://doi.org/10.1016/j.proeng.2017.02.045.

N. S. Msinjili, W. Schmidt, A. Rogge, and H.-C. Kühne, “Performance of rice husk ash blended cementitious systems with added su-perplasticizers,” Cem. Concr. Compos., vol. 83, pp. 202–208, Oct. 2017, https://doi.org/10.1016/j.cemconcomp.2017.07.014.

S. A. Saad, N. Shafiq, M. M. Osman, and S. A. Masjuki, “Compressive Strength and Microstructure Analysis of Treated Rice Husk Ash (TRHA) Incorporated Mortar,” Int. J. Eng. Technol., vol. 7, no. 4.35, p. 388, Nov. 2018, https://doi.org/10.14419/ijet.v7i4.35.22768.

A. N. Givi, S. A. Rashid, F. N. A. Aziz, and M. A. M. Salleh, “Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete,” Constr. Build. Mater., vol. 24, no. 11, pp. 2145–2150, Nov. 2010, https://doi.org/10.1016/j.conbuildmat.2010.04.045.

V.-T.-A. Van, C. Rößler, D.-D. Bui, and H.-M. Ludwig, “Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high-performance concrete,” Cem. Concr. Compos., vol. 53, pp. 270–278, Oct. 2014, https://doi.org/10.1016/j.cemconcomp.2014.07.015.

T. Ahmed, M. Elchalakani, A. Karrech, M. S. Mohamed Ali, and L. Guo, “Development of ECO-UHPC with very-low-C3A ce-ment and ground granulated blast-furnace slag,” Constr. Build. Mater., vol. 284, p. 122787, May 2021, https://doi.org/10.1016/j.conbuildmat.2021.122787.

S. K. Haldar, Minerals and rocks. Elsevier, 2020. https://doi.org/10.1016/B978-0-12-820585-3.00018-1.

Y. R. Alkhaly, Abdullah, Husaini, and M. Hasan, “Characteristics of reactive powder concrete comprising synthesized rice husk ash and quartzite powder,” J. Clean. Prod., vol. 375, p. 134154, Nov. 2022, https://doi.org/10.1016/j.jclepro.2022.134154.

M. Canbaz, “The effect of high temperature on reactive powder concrete,” Constr. Build. Mater., vol. 70, pp. 508–513, Nov. 2014, https://doi.org/10.1016/j.conbuildmat.2014.07.097.

J. Zhao, M. Sufian, M. A. Abuhussain, F. Althoey, and A. F. Deifalla, “Exploring the potential of agricultural waste as an additive in ultra-high-performance concrete for sustainable construction: A comprehensive review,” Rev. Adv. Mater. Sci., vol. 63, no. 1, p. 20230181, Mar. 2024, https://doi.org/10.1515/rams-2023-0181.

K. Wille, A. E. Naaman, and G. J. Parra-Montesinos, “Ultra-High-Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way,” ACI Mater. J., vol. 108, no. 1, 2011, https://doi.org/10.14359/51664215.

Y. J. Kim, “Recent Advances in Ultra-High-Performance Concrete,” J. Korean Recycl. Constr. Resour. Inst., vol. 1, no. 3, pp. 163–172, Dec. 2013, https://doi.org/10.14190/JRCR.2013.1.3.163.

Z. Mo, X. Gao, and A. Su, “Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions,” Constr. Build. Mater., vol. 268, p. 121112, Jan. 2021, https://doi.org/10.1016/j.conbuildmat.2020.121112.

B. Liu, J. Jiang, S. Shen, F. Zhou, J. Shi, and Z. He, “Effects of curing methods of concrete after steam curing on mechanical strength and permeability,” Constr. Build. Mater., vol. 256, p. 119441, Sep. 2020, https://doi.org/10.1016/j.conbuildmat.2020.119441.




DOI: https://doi.org/10.52088/ijesty.v5i4.1107

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Said Jalalul Akbar, Yulius Rief Alkhaly, Maizuar, M. Ibnu H F. Harahap

International Journal of Engineering, Science, and Information Technology (IJESTY) eISSN 2775-2674