Sentiment Analysis of the MK Decision Trial of the Result of the 2024 President and Vice President General Election on Social Media X Using the Support Vector Machine Method
Abstract
Support Vector Machine (SVM) is a method of machine learning often used in classification and regression issues, especially in the classification of commentary reviews on social media such as Twitter. The Constitutional Court (MK) has the authority to resolve disputes resulting from the general election, including the 2024 presidential election. As an institution that maintains fairness and transparency in the democratic process, the Constitutional Court's decisions are often at the center of public attention and debate, especially on social media. In the 2024 general election, various allegations of fraud led to protests from several parties who felt aggrieved. The final and binding Constitutional Court's decision is expected to resolve the conflict that arises, but it often does not satisfy all parties, causing political and social tensions. This conflict can be reflected through public opinion expressed on social media, such as Twitter, where various responses and sentiments to the decision are essential analysis materials. This Research uses the Support Vector Machine (SVM) algorithm with a dataset of 1383 review comments divided by an 80:20 ratio for training and testing. The system was implemented using the Python programming language, with evaluations showing the highest accuracy at 61.00%, precision at 61.00%, and recall at 62.00%. This study aims to analyze public sentiment regarding the Constitutional Court's decision using the SVM method and identify the tendency of public opinion as positive, negative, or neutral. Through this study, it is expected that a deeper understanding of the public's perception of the Constitutional Court's decision is obtained. In addition, this Research is likely to contribute to developing sentiment analysis methods in the future and provide a basis for recommendations for the Constitutional Court in handling election result disputes better.
Keywords
Full Text:
PDFReferences
Putri, M. P. (2016). Peran Komisi Pemilihan Umum Dalam Sosialisasi Pemilu Pada Pemilu Presiden 2014 di Kalimantan Timur. Ejournal Ilkom Fisip Unmul, 4(1), 30–43.
Simbolon, E. Z., & Kasslim, V. (2024). PENYELESAIAN SENGKETA HASIL PEMILIHAN PRESIDEN DAN WAKIL PRESIDEN TAHUN 2024 DI MAHKAMAH KONSTITUSI. 4(2), 48–54.
Program, I. K., Tani, K., Kelompok, D., Sedyo, T., Padukuhan, U., Kalurahan, W., Kapanewon, B., Kabupaten Bantul, S., & Raharjo, J. (2024). Journal of Indonesian Rural and Regional Government. 7(2), 77–95.
Neethu, M. S., & Rajasree, R. (2013). Sentiment analysis in twitter using machine learning techniques. 2013 4th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2013. https://doi.org/10.1109/ICCCNT.2013.6726818
Ahuja, R., Gupta, R., Sharma, S., Govil, A., & Venkataraman, K. (2017). Twitter based model for emotional state classification. 4th IEEE International Conference on Signal Processing, Computing and Control, ISPCC 2017, 2017-Janua, 494–498. https://doi.org/10.1109/ISPCC.2017.8269729
Internasional, K., Komputasi, K., Dieksona, Z. A., Rivyan, M., Prakosoa, B., Qalby, M. S., Dieksona, A., Rivyan, M., Prakosoa, B., Shaden, M., Fadel, A., Achmada, S., Sutoyoa, R., Shaden, M., Fadel, A., Achmada, S., & Sutoyoa, R. (2023). Sains Langsung Analisis sentimen untuk ulasan pelanggan : Studi kasus Traveloka Analisis sentimen untuk ulasan pelanggan : Studi kasus Traveloka.
Nurmawiyaa, K. A. H. (2022). Public sentiment towards face-to-face activites during the COVID-19 pandemic in Indonesia. Procedia Computer Science, 197, 529–537.
Internasional, K., Komputasi, K., Isana, M., Elwirehardjaa, G. N., & Pardameana, B. (2023). Sains Langsung Analisis Sentimen untuk Review TikTok Menggunakan Sentimen VADER dan Model SVM. 019, 177–184.
Permana, A. A., & Putra, P. P. (2023). Sentiment Analysis Public Opinion of Cfw (Citayam Fashion Week) on Social Media Twitter Using Naïve Bayes Classifier. JIKA (Jurnal Informatika), 7(1), 112. https://doi.org/10.31000/jika.v7i1.7410
Zahrah, V. A., Nurdin, & Risawandi. (2024). Sentiment analysis of Google Maps user reviews on the Play Store using Support Vector Machine and Latent Dirichlet Allocation topic modeling. International Journal of Engineering, Science and Information Technology, 4(4), 87-100. https://doi.org/10.52088/ijesty.v4i4.580
Samudera B. D., Nurdin, Hafizh, H. A. K. (2024). Sentiment Analysis of User Reviews on BSI Mobile and Action Mobile Appli-cations on the Google Play Store Using Multinomial Naive Bayes Algorithm. International Journal of Engineering, Science and InformationTechnology Volume 4, No. 4 (2024) pp. 101-112. https://doi.org/10.52088/ijesty.v4i4.581
Prasetyo, A., Nurdin, Aidilof, H. A. K. (2024). Comparison of Triple Exponential Smoothing and ARIMA in Predicting Crypto-currency Prices. International Journal of Engineering, Science and InformationTechnology Volume 4, No. 4 (2024) pp. 63-71. https://doi.org/10.52088/ijesty.v4i4.577
Surbakti, R. (2010). Memahami Ilmu Politik. Jakarta PT Grasindo. GRASINDO.
Syamsurrijal, M., Nurmandi, A., Jubba, H., Hidayati, M., Baharuddin, T., & Qodir, Z. (2021). Prediction candidates and political parties in the presidential election 2024 in Indonesia based on twitter. ResearchSquare, 1–9. https://doi.org/10.21203/rs.3.rs-1058949
Putri, W. A. (2022). Mahkamah Konstitusi dalam Sistem Republik Indonesia. Jurnal Demokrasi Dan Ketahanan Nasional, 1(Uud 1945), 671–680.
Andryan dan M. Kholis M.A Harahap. (2023). Constitutionality of the Period of the Presidential Election Dispute in the Constitutional Court. Buletin Konstitusi, Volume 4(Nomor 2).
Nurdin, N., Suhendri, M., Afrilia, Y., & Rizal, R. (2021). Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naive Bayes Classifier (NBC). Sistemasi, 10(2), 268. https://doi.org/10.32520/stmsi.v10i2.1193
Nurdin, Hutomi, M., Qamal, M., & Bustami, B. (2020). Sistem Pengecekan Toko Online Asli atau Dropship pada Shopee Menggunakan Algoritma Breadth First Search. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(6), 1117–1123. https://doi.org/10.29207/resti.v4i6.2514
Haddi, E., Liu, X., & Shi, Y. (2013). The role of text preprocessing in sentiment analysis. Procedia Computer Science, 17, 26–32. https://doi.org/10.1016/j.procs.2013.05.005
Rofiqoh, U., Perdana, R. S., & Fauzi, M. A. (2017). Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexion Based Feature. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 1(12), 1725–1732. http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/628
Ahuja, R., Chug, A., Kohli, S., Gupta, S., & Ahuja, P. (2019). The impact of features extraction on the sentiment analysis. Procedia Computer Science, 152(July), 341–348. https://doi.org/10.1016/j.procs.2019.05.008
Seref, B., & Bostanci, E. (2018). Sentiment Analysis using Naive Bayes and Complement Naive Bayes Classifier Algorithms on Hadoop Framework. ISMSIT 2018 - 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings, 1–7. https://doi.org/10.1109/ISMSIT.2018.8567243
Yunizar. (2021). Sistem Informasi Dana Desa Berbasis Web Mobile Di Kecamatan Makmur Kabupaten Bireuen. Jurnal Teknologi Terapan and Sains 4.0, 2(3), 615. https://doi.org/10.29103/tts.v2i3.6508
DOI: https://doi.org/10.52088/ijesty.v4i4.591
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Aji Anggara, Nurdin, Rini Meiyanti