Application of Fuzzy Mamdani Method to Predict the Number of Blood Bags Based on Demand and Supply Data Using Matlab
Abstract
Fuzzy logic is a control system technique in solving problems and is applied to systems, from basic systems to difficult or complex systems. Fuzzy logic is the proper method to plan an input space into an output space using MATLAB's mathematical theory of fuzzy sets. The reason for using fuzzy logic is because it is related to uncertainty. The unstable demand for blood bags in hospitals makes the supply of blood bags excessive or lacking from demand. The lack of blood supply results in the unfulfilled demand for blood needed by the hospital, while the excess blood supply worsens the quality of blood. In this study, we will predict the number of bags produced using the Mamdani Fuzzy Inference System (FIS) method based on the minimum demand and maximum demand values and the minimum supply and maximum supply that produce output from the defuzzification process. Applying the Mamdani Fuzzy Inference System (FIS) method based on demand and supply data obtains optimal output with MATLAB in predicting the number of blood bags produced. The results of the study showed that the Mean Absolute Percentage Error (MAPE) fuzzy logic Mamdani error value was 24%, the accuracy value of the Fuzzy Inference System (FIS) Mamdani in determining the number of blood bag production was 76%, and the production output generated through the Fuzzy Inference System (FIS) Mamdani was 4,774 blood bags. The number of blood requests at the hospital is 4,443 blood bags, so the amount of blood that must be produced to meet the hospital's demand is 4,774 bags.
Keywords
Full Text:
PDFReferences
B. Setia, “Penerapan Logika Fuzzy pada Sistem Cerdas,” J. Sist. Cerdas, vol. 2, no. 1, pp. 61–66, 2019, doi: 10.37396/jsc.v2i1.18.
M. D. Irawan and H. Herviana, “Implementasi Logika Fuzzy Dalam Menentukan Jurusan Bagi Siswa Baru Sekolah Menengah Kejuruan (Smk) Negeri 1 Air Putih,” J. Teknol. Inf., vol. 2, no. 2, p. 129, 2019, doi: 10.36294/jurti.v2i2.427.
Minarni and F. Aldyanto, “Prediksi Jumlah Produksi Roti Menggunakan Metode Logika Fuzzy (Studi Kasus : Roti Malabar Bakery),” J. TEKNOIF, vol. 4, no. 2, pp. 59–65, 2020.
M. Abrori and A. H. Prihamayu, “Aplikasi Logika Fuzzy Metode Mamdani,” Kaunia, vol. 11, no. 2, pp. 91–99, 2015.
E. S. Puspita and L. Yulianti, “Perancangan Sistem Peramalan Cuaca Berbasis Logika Fuzzy,” J. Media Infotama, vol. 12, no. 1, 2016, doi: 10.37676/jmi.v12i1.267.
B. Haqi, “Model penduga jumlah produksi pil kb trinordiol*-28: studi kasus pt.sunthi sepuri,” vol. 4, no. 1, pp. 37–47, 2011.
D. Kartika and R. L. Gema, "Comparative Analysis of Production Prediction of Silungkang Songket and Pandai Sikek Songket with Mamdani Fuzzy Inference System (FIS) Method," J. IPTEKS Terap., vol. 14, no. 3, pp. 274–284, 2020.
G. Taufiq, “Implementasi Logika Fuzzy Tahani untuk Model Sistem Pendukung Keputusan Evaluasi Kinerja Karyawan,” J. Pilar Nusa Mandiri, vol. 12, no. 1, pp. 12–20, 2016.
I. P. Sari, “Perencanaan Jumlah Produksi Bubuk Cabai Dengan Metode Fuzzy Mamdani Berdasarkan Perkiraaan Permintaan Pada Pt Ganesha Abaditama,” J. Ilm. Teknol. dan Rekayasa, vol. 23, no. 2, pp. 133–145, 2018, doi: 10.35760/tr.2018.v23i2.2463.
T. Pangaribowo, “Jurnal Teknologi Elektro, Universitas Mercu Buana ISSN : 2086-9479 PERANCANGAN SIMULASI KENDALI,” J. Teknol. Elektro, vol. 6, no. 2, pp. 123–135, 2015.
D. Kurniadi, F. Nuraeni, and D. Jaelani, “Implementasi Logika Fuzzy Mamdani Pada Sistem Prediksi Calon Penerima Program Keluarga Harapan,” J. Algoritm., vol. 19, no. 1, pp. 151–162, 2022, doi: 10.33364/algoritma/v.19-1.1016.
T. Pranata, B. Irawan, and Ilhamsyah, “Penerapan Logika Fuzzy pada Sistem Penyiraman Tanaman Otomatis Berbasis Mikrokontroler,” J. Coding, Sist. Komput. Untan, vol. 03, no. 2, pp. 11–22, 2020.
I. Raga Djara, T. Widiastuti, and D. M. Sihotang, “Penerapan Logika Fuzzy Menggunakan Metode Mamdani Dalam Optimasi Permintaan Obat,” J. Komput. dan Inform., vol. 7, no. 2, pp. 157–161, 2019, doi: 10.35508/jicon.v7i2.1645.
D. Rumalowak, Y. A. Lesnussa, and F. Y. Rumlawang, “Penerapan Logika Fuzzy Metode Mamdani Untuk Menentukan Jumlah Produksi Ayudes (Studi Kasus: CV. Abadi Tiga Mandiri Ambon),” Pattimura Int. J. Math., vol. 2, no. 1, pp. 25–32, 2023, doi: 10.30598/pijmathvol2iss1pp25-32.
U. Tarigan and M. F. Ardiansyah, “Penerapan Fuzzy Min-Max Mamdani Untuk Memprediksi Jumlah Produksi Di Pt.Xyz," J. Sist. Tek. Ind., vol. 21, no. 2, pp. 43–51, 2019, doi: 10.32734/jsti.v21i2.1226.
A. Wantoro, “Komparasi Perhitungan Pemilihan Mahasiswa Terbaik Menggunakan Metode Perhitungan Klasik Dengan Logika Fuzzy Mamdani & Sugeno,” J. Pendidik. Teknol. dan Kejuru., vol. 15, no. 1, pp. 42–50, 2018, doi: 10.23887/jptk-undiksha.v15i1.13000.
A. R. Wardani, Y. N. Nasution, and F. D. T. Amijaya, “Aplikasi Logika Fuzzy Dalam Mengoptimalkan Produksi Minyak Kelapa Sawit Di PT. Waru Kaltim Plantation Menggunakan Metode Mamdani,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 12, no. 2, p. 94, 2017, doi: 10.30872/jim.v12i2.651.
M. F. Rahman and F. Yanti, “Aplikasi Logika Fuzzy Dalam Optimisasi Produksi Mebel Menggunakan Metode Mamdani,” J. Inform. MULTI, vol. 1, no. 3, pp. 172–181, 2023.
U. M. Rifanti, H. Pujiharsono, and Z. H. Pradana, “Implementasi Logika Fuzzy Pada Penilaian Kegiatan Merdeka Belajar Kampus Merdeka (MBKM),” JST (Jurnal Sains dan Teknol., vol. 12, no. 1, pp. 250–260, 2023, doi: 10.23887/jstundiksha.v12i1.50057.
Y. Dianti, "??No Title No Title No Title," Angew. Chemie Int. Ed. 6(11), 951–952., no. 2011, pp. 5–24, 2017.
R. M. Azkia, Kusrini, and Sudarmawan, “Perencanaan Distribusi Kantong Darah Menggunakan Sistem Pendukung Keputusan Dengan Algoritma TOPSIS dan Fuzzy (Studi Kasus: UTD PMI Kabupaten Lombok Timur),” Proceeding Semin. Nas. Sist. Inf. dan Teknol. Inf., vol. 1, no. 1, pp. 170–175, 2018.
A. C. N. Sirait, E. Buulolo, and H. Hutabarat, “Memprediksi Jumlah Penerimaan Dan Permintaan Darah Di Palang Merah Indonesia (Pmi) Kita Medan Dengan Menggunakan Metode Id3 (Studi Kasus: Pmi Kota Medan),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 15–19, 2019, doi: 10.30865/komik.v3i1.1560.
DOI: https://doi.org/10.52088/ijesty.v4i4.567
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Tiara Imelda Nasrul, Amri Amri, Muhammad Sayuti