Grouping Sales Levels Smartphone Of Offline Store Using BIRCH Clustering Algorithm

Putri Dwi Rahmadani Sari, Mukti Qamal, Lidya Rosnita

Abstract


From 2020 to 2024, TM_Store and Jaya Com exhibited different sales patterns based on cluster analysis using the BIRCH algorithm. The background of this research is to provide strategic insights to both stores for improving their sales performance through data analysis. The sales data used includes brand, type, month, year, stock quantity, quantity sold, unit price, and total sales. The BIRCH method was chosen for its effectiveness in handling large datasets and providing accurate clustering results. The clustering results indicate a significant increase in the "Moderate" category, from 12 sales in 2020 to 354 sales in 2023. Meanwhile, the "Very High" category also saw an increase from 5 sales in 2020 to 97 sales in 2023, with sales in the "Very Low" category remaining high at 70 sales in 2023. On the other hand, Jaya Com was dominated by the "Very High" category, with a sharp increase from 25 sales in 2020 to 597 sales in 2023. The "High" category also showed significant growth, from 6 sales in 2020 to 98 sales in 2023. This data indicates that Jaya Com focuses on high-performance products, while TM_Store shows a more balanced distribution across various sales categories. Based on the analysis, Jaya Com had 1988 data points with 1984 cluster points, whereas TM_Store had 2012 data points with 1811 cluster points. Overall, the study concludes that the BIRCH algorithm can identify significant sales patterns in both stores, aiding in the development of more effective and efficient promotional strategies tailored to each sales category's performance.


Keywords


BIRCH, Smartphone, Sales, Shop, Clustering

Full Text:

PDF

References


Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma, 4(1), 51-58. https://doi.org/10.30865/mib.v4i1.1784

Afiasari, N., Suarna, N., & Rahaningsi, N. (2023). Implementasi Data Mining Transaksi Penjualan Menggunakan Algoritma Clustering dengan Metode K-Means. Jurnal SAINTEKOM, 13(1), 100–110. https://doi.org/10.33020/saintekom.v13i1.402

Alzu’Bi, A., & Barham, M. (2022). Automatic BIRCH Thresholding With Features Transformation For Hierarchical Breast Cancer Clustering. International Journal of Electrical and Computer Engineering, 12(2), 1498–1507. https://doi.org/10.11591/ijece.v12i2.pp1498-1507

Anam, C., & Iswari, R. (2021). Kemampuan Pengusaha Dari Perspektif Orientasi Kewirausahaan dan Konsep Penjualan Di Masa New Normal. Jurnal Ilmu Manajemen, 10(2), 93-100. https://doi.org/10.32502/jimn

Dinata, R. K., Safwandi, S., Hasdyna, N., & Azizah, N. (2020). Analisis k-means clustering pada data sepeda motor. INFORMAL: Informatics Journal, 5(1), 10-17. https://doi.org/10.19184/isj.v5i1.17071

Harahap, L. M., Fuadi, W., Rosnita, L., Darnila, E., & Meiyanti, R. (2022). Klastering Sayuran Unggulan Menggunakan Algoritma K-Means. Jurnal Teknik Informatika Dan Sistem Informasi, 8(3). https://doi.org/10.28932/jutisi.v8i3.5277

Hasibuan, F. P. A., Sumarno, S., & Parlina, I. (2021). Penerapan K-Means pada Pengelompokan Penjualan Produk Smartphone. SATESI: Jurnal Sains Teknologi Dan Sistem Informasi, 1(1), 15–20. https://doi.org/10.54259/satesi.v1i1.3

Hidayat, I., Darnila, E., & Afrillia, Y. (2023). Clustering Zonasi Daerah Rawan Bencana Alam di Kabupaten Mandailing Natal menggunakan Algoritma K-Means. G-Tech: Jurnal Teknologi Terapan, 7(3), 1218–1226. https://doi.org/10.33379/gtech.v7i3.2880

Karyono, K., Violin, V., Osman, I., Rao, D. G., & Apramilda, R. (2024). Analysis of The Interrelationship of Human Resource Performance, Digital Service Quality, Perceived of Service Value and Customer Loyalty. International Journal of Engineering, Science and Information Technology, 4(3), 66-71. .https://doi.org/10.52088/ijesty.v4i3.527

Kushariyadi, K., Yani, I., Silamat, E., Sari, T. N., & Aulia, M. R. (2024). Analysis of The Influence of Market Consumption Behavior and Economic Conditions on SME Business Performance. International Journal of Engineering, Science and Information Technology, 4(3), 35-40. https://doi.org/10.52088/ijesty.v4i3.521

Maulida, L. (2020). Penerapan Data Mining dalam Mengelompokkan Kunjungan Wisatawan ke Objek Wisata Unggulan di Prov. DKI Jakarta dengan K-Means. JISKA (Jurnal Informatika Sunan Kalijaga), 2(3), 167-174. https://doi.org/10.14421/jiska.2018.23-06

Mina, M., & Kartika, K. (2023). Monitoring System for Levels of Voltage, Current, Temperature, Methane, and Hydrogen in IoT-Based Distribution Transformers. International Journal of Engineering, Science and Information Technology, 3(1), 22-27. https://doi.org/10.52088/ijesty.v3i1.414

Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253

Nwadiugwu, M. C. (2020). Gene-Based Clustering Algorithms: Comparison Between Denclue, Fuzzy-C, and BIRCH. In Bioinformatics and Biology Insights (Vol. 14), 1-6. https://doi.org/10.1177/1177932220909851

Oktory, H. D., & Hadiwandra, T. Y. (2024). Penerapan Algoritma Apriori untuk Penentuan Pola Pembelian Kacamata pada Optik Indah Optikal: Application of an Apriori Algorithm to Determine Eyeglass Purchasing Patterns at Optik Indah Optik. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1275-1281. https://doi.org/10.57152/malcom.v4i4.1353

Qamal, M., Syah, F., & Parapat, A. Z. I. (2023). Implementasi Data Mining Untuk Rekomendasi Paket Menu Makanan Menggunakan Algoritma Apriori Implentasi Data Mining Untuk Rekomendasi Paket Menu Makanan Menggunakan Algoritma Apriori. TECHSI-Jurnal Teknik Informatika, 14(1), 42-53. https://doi.org/10.29103/techsi.v14i1.6747

Ramadhani, F., Zarlis, M., & Suwilo, S. (2020). Improve BIRCH Algorithm For Big Data Clustering. In IOP Conference Series: Materials Science and Engineering, 725(1), 1-10. https://doi.org/10.1088/1757-899X/725/1/012090

Suciana, D. A., & Syahputra, E. (2023). Analisis Strategi Promosi Dalam Meningkatkan Penjualan Produk Pada Resto Dan Pusat Oleh-Oleh Putra Nirwana Magetan Di Era Pandemi Covid. Digital Bisnis: Jurnal Publikasi Ilmu Manajemen dan E-Commerce, 2(2), 95–115. https://doi.org/10.30640/digital.v2i2.1058

Venkateswarlu, B., & Raju, P. G. S. V. P. (2022). Mine Blood Donors Information through Improved K-Means Clustering. International Journal of Computational Science and Information Technology, 1(3), 9-15. https://doi.org/10.48550/arXiv.1309.2597

Yan, Z., Yang, G., He, R., Yang, H., Ci, H., & Wang, R. (2023). Ship Trajectory Clustering Based on Trajectory Resampling and Enhanced BIRCH Algorithm. Journal of Marine Science and Engineering, 11(2). https://doi.org/10.3390/jmse11020407




DOI: https://doi.org/10.52088/ijesty.v4i4.558

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Putri Dwi Rahmadani Sari, Mukti Qamal, Lidya Rosnita

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674