Artificial Neural Network Model For Wind Mill

Zulfian Azmi

Abstract


Utilization of wind energy sources provides advantages in terms of being environmentally friendly, and it can be energy source is realible. The analysis of wind mill control using Neural Network model for Uncertain Variables or abbreviated as the VTP model is expected to provide a solution in solving the windmill control case. And the Neural Network model for Uncertain Variables uses probability techniques, degree of membership, logical OR function, linear programming and    euclidean distance to reduce the learning process In this research, wind mill control uses variable air pressure and duration of sunshine to determine whether the wind mill is moving or not. Finally, this research tries to analyze windmill control, which in the future is expected to produce a smart wind mill control system. And the Neural Network model for Uncertain Variables can be used to control windmills with the different of input data

Keywords


Control, Wind mill, ANN, Uncertain Variable, Air Pressure.

Full Text:

PDF

References


V. L. Narayanan and R. Ramakrishnan, “Pitch Control of a Digital Hydraulics Pitch System for Wind Turbine Based on Neuro-Fuzzy Digital Pitch Controller,” Int. J. Renew. Energy Res., vol. 11, no. 1, pp. 417–425, 2021.

M. Lauranti and E. A. Djamhari, “Transisi Energi yang Setara di Indonesia: Tantangan dan Peluang,” vol. © 2017 Fri, no., p. 48, 2017, [Online]. Available: http://library.fes.de/pdf-files/bueros/indonesien/14758.pdf.

E. I. Konstantinidis and P. N. Botsaris, “Wind turbines: Current status, obstacles, trends and technologies,” IOP Conf. Ser. Mater. Sci. Eng., vol. 161, no. 1, 2016, doi: 10.1088/1757-899X/161/1/012079.

J.Wignesh and S. C. A, “Design and fabrication of vertical axis wind mill with solar system,” Mater. Today Proc., vol. 44, no., p., 2021, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785319311526.

S. Widyanto, S. Wisnugroho, and M. Agus, “Pemanfaatan Tenaga Angin Sebagai Pelapis Energi Surya pada Pembangkit Listrik Tenaga Hibrid di Pulau Wangi-Wangi,” Semin. Nas. Sain dan Teknol. 2018, pp. 1–12, 2018.

S. Hernowo, “Rancang bangun turbin angin sumbu horizontal sederhana dengan panjang sudu 1 meter sigit hernowo,” J. Voering, vol. 5, no. 1, pp. 15–21, 2020, [Online]. Available: http://jurnal.poltekstpaul.ac.id/index.php/jurvoe/article/view/216/145.

Z. Azmi and V. Yasin, Pengantar Sistem pakar dan Metode. Mitra Media Wacana, 2017.

Z. Azmi and V. Yasin, Pengantar jaringan saraf tiruan ( introduction to artificial neural network). Mitra Media Wacana, 2021.

Z. Azmi and H. Mawengkang, “Perceptron Genetic to Recognize Openning Strategy Ruy Lopez,” IOP Conf. Ser. Mater. Sci. Eng., vol. 300, no. 1, 2018, doi: 10.1088/1757-899X/300/1/012069.

H. Kukreja, “An introduction to artificial neural networks,” Hardw. Archit. Deep Learn., no. 5, pp. 3–26, 2020, doi: 10.1049/pbcs055e_ch1.

Z. Azmi, E. B. N. BN, H. Mawengkang, and M. ZARLIS, “Neuron Model for Input Uncertainty,” J. Telemat. dan Informatics, vol. 6, no., pp. 166–172, 2018, doi: 10.12928/jti.v6i2.

Z.- Azmi, M. K. M. Nasution, H. Mawengkang, and M. Zarlis, “Uncertainty Ontology for Module Rules Formation Waterwheel Control,” Sci. J. Informatics, vol. 5, no. 1, p. 66, 2018, doi: 10.15294/sji.v5i1.14188.

JJ. De Groote and D.M.L. Barbato, “Generalization of finite size Boolean perceptrons with genetic algorithms.,” Neurocomputing, vol. 71, no. 16–18, October 2008, pp. 3650–3655, 2008.

D. Z. and S. K. Pal, “A fuzzy clustering neural networks (FCNs) system design methodology,” Natl. Libr. Med., vol. 11, no. 5, Sept. 2000, pp. 1174–1177, 2016.

S. Andrii, “Multinomial classification of web attacks using improved fuzzy rules learning by Neuro-Fuzzy.,” Int. J. Hybrid Intell. Syst. V, vol. 13, no., pp. 15-26, 2016.

J. C. Patra, “Chebyshev neural network-based model for dual-junction solar cells,” IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 132–139, 2011, doi: 10.1109/TEC.2010.2079935.

S. Ashmore and M. Gashler, “A method for finding similarity between multi-layer perceptrons by Forward Bipartite Alignment,” Proc. Int. Jt. Conf. Neural Networks, vol. 2015-Septe, 2015, doi: 10.1109/IJCNN.2015.7280769.

Sugiyono, Metode penelitian pendidikan:(pendekatan kuantitatif, kualitatif dan R & D). Bandung CV. Alfabeta: CV. Alfabeta, 2008.

Z. AZMI, “MODEL JARINGAN SARAF TIRUAN UNTUK VARIABEL TIDAK PASTI,” Medan, 2020. [Online]. Available: http://repositori.usu.ac.id/handle/123456789/28542.

Z. AZMI, M. ZARLIS, and H. MAWENGKANG, “UNCERTAIN INPUT SELECTION MODEL FOR NEURON,” JATIT, vol. 97, no. 21, p. 2982, 2019, [Online]. Available: JURNAL SUBMIT UNTUK LEKTOR KEPALA/MODEL JARINGAN SARAF TIRUAN.pdf.

H. P Dida, S. Suparman, and D. Widhiyanuriyawan, “Pemetaan Potensi Energi Angin di Perairan Indonesia Berdasarkan Data Satelit QuikScat dan WindSat,” J. Rekayasa Mesin, vol. 7, no. 2, pp. 95–101, 2016, doi: 10.21776/ub.jrm.2016.007.02.7.

A. & H. Pujiastuti, “Sistem Perhitungan Lama Penyinaran Matahari ( Studi Kasus : ST . KLIMATOLOGI BARONGAN ),” Jur. Ilmu Komputer, FMIPA UGM, vol. 5, 2016, [Online]. Available: http://ejournals.stta.ac.id/index.php/compiler/article/view/166.




DOI: https://doi.org/10.52088/ijesty.v1i3.84

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Zulfian Azmi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674