Sentiment Analysis Using Convolutional Neural Network Method to Classify Reviews on Zoom Cloud Meetings Application Based on Reviews on Google Playstore

Rina Refianti, Novia Anggraeni

Abstract


Zoom Cloud Meetings is an application that is used to conduct video conferencing. On the Google Play Store, the Zoom Cloud Meeting application received a rating of 3.8, with 500 million more downloads as of March 2021. The application has many advantages, such as not being disturbed by pauses in conversation and having good video and audio quality. The advantages possessed by these applications require development so that application services are getting better. For this reason, user reviews are needed to see user satisfaction with the application so that they can determine services that can be developed in the future. Based on this, this research was created to create a web-based application that can classify user reviews of the Zoom Cloud Meetings application using the Convolutional Neural Network (CNN) method and calculate the accuracy value. This application is built using the Flask framework and the Python programming language. Model training is carried out using the TensorFlow library. Applications that have been made are then tested using two stages of testing, namely system testing with black box and data testing. Based on system testing, it was found that the website can run well, and for data testing using test data, the accuracy result is 91.5%.


Keywords


Classification, Sentiment Analysis, Convolutional Neural Network, Deep Learning

Full Text:

PDF

References


A. Nurdin, B.A.S. Aji, A. Bustamin, Z. Abidin, ”Perbandingan Kinerja Word Embedding Word2vec, Glove, Dan Fasttext Pada Klasifikasi Teks,” Jurnal Teknokompak, vol. 14, no.2, pp. 74-79, 2020.

D. Alita, A. Rahman, ”Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,” Jurnal Komputasi, vol. 8, no. 2, pp. 50-58, 2020.

I.W.S.E. Putra, A.Y. Wijaya,R. Soelaiman, ”Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” Jurnal Teknik ITS, vol. 5, no. 1, pp. 65-69, 2016.

L.A. Andika, P.A.N. Azizah, and Respatiwulan, ”Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presi- den Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indonesian Journal of Applied Statistics, vol. 2, no. 1, pp. 34-41, May 2019.

P.A. Nugroho, I. Fenriana, R. Arijanto, ”Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia,” Jurnal Algor, vol.2 , no. 1, pp. 12-21, 2020.

N. Ruhyana, ”Analisis Sentimen Terhadap Penerapan Sistem Plat Nomor Ganjil/Genap Pada Twitter Dengan Metode Klasifikasi Naive Bayes,” Jurnal IKRA-ITH Informatika, vol.3, no. 1, pp. 2580-4316, 2019.

W.A. Luqyana, I. Cholissodin, R.S. Perdana, ”Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifi-kasi Support Vector Machine,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 11, pp. 4704- 4713, 2018.

W. Parasati, F.A. Bachtiar, N.Y. Setiawan, ”Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naive Bayes Classifier,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 4, pp. 1090-1099, 2020.

Y.R. Yunius, ”Implementasi Algoritma Convolutional Neural Network Dengan Framework Tensorflow Pada Aplikasi Mobile Pendeteksi Penyakit Melanoma Dengan Memanfaatkan Webservice Framework Flask,” Jurnal Infact, vol. 1, no. 2, pp. 1-11, Aug.2017.

R.D. Indrapurasih, M.A. Bijaksana, I.L. Sardi, ”Implementasi dan Analisis Kesamaan Semantik Antar Kata Bahasa Indonesia Menggunakan Metode GloVe,” e-Proceeding of Engineering, vol. 5, no. 3, pp. 7699-7706, 2018.

R. Agrawal, Extracting Knowledge From Opinion Mining. Hershey PA: IGI Global, 2018.

M. Lathkar, Building Web Apps with Python and Flask : Learn to Develop and Deploy Responsive RESTful Web Application Using Flask Framework. New Delhi: BPB Publications, 2021.

M. Copperwaite, C. Leifer, Learning flask framework: Build dynamic, data-driven and modern applications with flask. Birm- ingham: Packt, 2015.

H. Kurniawan, ”DAFTAR SIMBOL. 1.Simbol UML (Unified Modelling Language) a. Simbol Use Case Diagram,” [on- line]. Available: https://docplayer.info/94613159-Daftar-simbol-1-simbol-uml-unifiel-modelling-language-a-simbol-use-case-diagram.html [Diakses: 17 Juli 2021]




DOI: https://doi.org/10.52088/ijesty.v3i3.463

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Rina Refianti, Novia Anggraeni

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674