Application of Pisang Awak Bunch-Derived Heterogenous Base Catalyst in Transesterification of Palm Oil into Biodiesel

Meriatna Meriatna, Zulmiardi Zulmiardi, Suryati Suryati, Sulhatun Sulhatun, Zukhrufi Dina Nasution, Rahmadhani Rahmadhani


Biodiesel is an alternative fuel for diesel machine comprosied of alkyl monoesters deriving from vegetable oils or animal fats. Cooking oil is an oil originated from vegetable or animal fat which has been priorly purified, where it appears in liquid form at room temperature and is usually used to fry food ingredients. Heterogenous catalyst is a catalyst present in different phase with the reagent in a reaction it catalyzes. Kalium content in banana in a banana bunch is sufficiently high reaching 94.4%. The aim of this study was to utilize banana bunch which has been priorly ashed using furnace at 700°C for 4 hours, thereafter, applied as a heterogenous catalyst in a the preparation process of biodiesel from cooking oil. Processing variables investigated in this research included the influences of the number of catalyst (3, 4, 5, 6, and 7%) and molar rasio of oil and methanol (1:5, 1:6, 1:7, 1:8, and 1:9) against the properties of produced biodiesel, namely density, viscosity, and water content which later compred with Indonesian standard (SNI). From the study, it was obtained maximum yield of 90.97% with methanol:oil rasio of 1:7 at processing temperature of 60°C with reaction time of 90 minutes and catalyst as much as 3 % w/w. The characteristics of the cooking oil-based biodiesel obtained from the a reaction with oil: methanol rasio of 1:6 and catalyst as much as 3% w/w were density 850 kg/m3 and viscosity 621 mm2/s. This research showed that the obtained biodiesel characteristics had been sufficient according to the SNI, and the use of calcinated banana bunch was very potential in the production of biodiesel acting as solid catalyst person.


Biodiesel, Heterogenous Catalyst, Cooking Oil, Banana Bunch

Full Text:



J. Carlos, P. Rojas, C. Rene, and T. San, “applied sciences Pollutant Emissions and Combustion E ffi ciency Assessment of Engines Using Biodiesel,” 2020.

M. Tomic, R. Micic, F. Kiss, N. Dedovic, and M. Simikic, “Economic and environmental performance of oil transesterification in supercritical methanol at different reaction conditions: Experimental study with a batch reactor,” Energy Convers. Manag., vol. 99, pp. 8–19, 2015, doi: 10.1016/j.enconman.2015.04.010.

S. K. Putri, Supranto, and R. Sudiyo, “Studi Proses Pembuatan Biodiesel dari Minyak Kelapa (Coconut Oil) dengan Bantuan Gelombang Ultrasonik,” Stud. Proses Pembuatan Biodiesel dari Miny. Kelapa (Coconut Oil) dengan Bantu. Gelombang Ultrason., vol. 6, no. 1, pp. 20–25, 2012, doi: 10.22146/jrekpros.2453.

H. Husin, T. M. Asnawi, A. Firdaus, H. Husaini, I. Ibrahim, and F. Hasfita, “Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production,” IOP Conf. Ser. Mater. Sci. Eng., vol. 358, no. 1, pp. 0–8, 2018, doi: 10.1088/1757-899X/358/1/012008.

M. Pazmiño-Hernandez, C. M. Moreira, and P. Pullammanappallil, “Feasibility assessment of waste banana peduncle as feedstock for biofuel production,” Biofuels, vol. 10, no. 4, pp. 473–484, 2019, doi: 10.1080/17597269.2017.1323321.

S. Permana, M. Andriani, and D. Dewiyana, “Production Capacity Requirements Planning Using The Capacity Method Requirement Planning,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 4, 2021, doi: 10.52088/ijesty.v1i4.165.

M. Andriani, H. Irawan, and N. Rizqa Asyura, “Improving Quality Using The Kano Model in Overcoming Competition in The Service Industry,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 4, 2021, doi: 10.52088/ijesty.v1i4.145.

B. Trisakti, D. Haryuwibawa, J. M. Pratama, and I. Irvan, “Effect of Temperature on the Combustion of Kepok Banana (Musa Paradisiaca Linn cv. ’Saba’) Peel as Potassium Source,” Talent. Conf. Ser. Energy Eng., vol. 1, no. 1, pp. 060–066, 2018, doi: 10.32734/ee.v1i1.124.

Y. Yurike, Y. Yonariza, and R. Febriamansyah, “Patterns of Forest Encroachment Behavior Based on Characteristics of Immigrants and Local Communities,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 4, 2021, doi: 10.52088/ijesty.v1i4.175.

N. Sylvia, Y. Yunardi, H. Husni, and A. Muslim, “Simulation of CO2 Gas Adsorption Process Flow at Cyclone Gas Outlet in Palm Oil Mills Using Computation Fluid Dynamic Simulation,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 3, 2021, doi: 10.52088/ijesty.v1i3.112.

W. A. Fanny, S. Subagjo, and T. Prakoso, “Pengembangan katalis Kalsium Oksida untuk sintesis biodiesel,” J. Tek. Kim. Indones., vol. 11, no. 2, p. 66, 2018, doi: 10.5614/jtki.2012.11.2.1.

D. S. Sopianti, H. Herlina, and H. T. Saputra, “Penetapan Kadar Asam Lemak Bebas Pada Minyak Goreng,” J. Katalisator, vol. 2, no. 2, p. 100, 2017, doi: 10.22216/jk.v2i2.2408.

F. Husain and I. Marzuki, “Pengaruh Temperatur Penyimpanan Terhadap Mutu dan Kualitas Minyak Goreng Kelapa Sawit,” vol. VI, no. 4, pp. 2270–2278, 2021.

C. Perego, “From biomass to advanced biofuel : the greendiesel case (ENI),” Sinchem Winter Sch., 2015.

I. Aziz, S. Nurbayti, and B. Ulum, “Pembuatan produk biodiesel dari Minyak Goreng Bekas dengan Cara Esterifikasi dan Transesterifikasi,” J. Kim. Val., vol. 2, no. 3, pp. 443–448, 2012, doi: 10.15408/jkv.v2i3.115.

M. Arnold, J. A. Tainter, and D. Strumsky, “Productivity of innovation in biofuel technologies,” Energy Policy, vol. 124, no. October 2018, pp. 54–62, 2019, doi: 10.1016/j.enpol.2018.09.005.

L. J. Konwar, J. Boro, and D. Deka, “Review on latest developments in biodiesel production using carbon-based catalysts,” Renew. Sustain. Energy Rev., vol. 29, pp. 546–564, 2014, doi: 10.1016/j.rser.2013.09.003.

A. L. M. Siregar, Idral, and Zultiniar, “Pembuatan Biodiesel Berbahan Baku CPO Menggunakan Reaktor Sentrifugal dengan Variasi Rasio Umpan dan Komposisi Katalis,” vol. 2, p. 283, 2015.

M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, and J. Hidaka, “Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production,” Fuel, vol. 87, no. 12, pp. 2798–2806, 2008, doi: 10.1016/j.fuel.2007.10.019.

G. Pathak, D. Das, K. Rajkumari, and L. Rokhum, “Exploiting waste: Towards a sustainable production of biodiesel using: Musa acuminata peel ash as a heterogeneous catalyst,” Green Chem., vol. 20, no. 10, pp. 2365–2373, 2018, doi: 10.1039/c8gc00071a.

Ranggita Dwi Nindya Affandi, Toni Rizki Aruan, Taslim, and Iriany, “PRODUKSI BIODIESEL DARI LEMAK SAPI DENGAN PROSES TRANSESTERIFIKASI DENGAN KATALIS BASA NaOH,” J. Tek. Kim. USU, vol. 2, no. 1, pp. 1–6, 2013, doi: 10.32734/jtk.v2i1.1419.

M. Faizal, U. Maftuchah, and W. A. Auriyani, “Pengaruh Kadar Metanol, Jumlah Katalis, Dan Waktu Reaksi Pada Pembuatan Biodiesel Dari Lemak Sapi Melalui Proses Transesterifikasi,” J. Tek. Kim., vol. 19, no. 4, pp. 29–37, 2013.



  • There are currently no refbacks.

Copyright (c) 2021 meriatna meriatna, Zulmiardi Zulmiardi, Suryati Suryati, Sulhatun Sulhatun, Zukhrufi Dina Nasution, Rahmadhani Rahmadhani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674