Desalination Technique on Seaweeds Hydrolysate Eucheuma Cottonii for Bioethanol Production

Jaini Fakhrudin, Dwi Setyaningsih, Mulyorini Rahayuningsih


The dissolved salts on Eucheuma cottonii hydrolysate interfere the growth of S. cerevisiae in the fermentation as it is considered as inhibitors. These salts are derived from biomass and formed from the chemicals used for hydrolysis processes such as H2SO4 and CaOH2. Ions and cations of the salts are potential as inhibitors such as Na+, Cl-, NH4+, SO42-. Osmotic pressure is raised due to the presence of salt. The efforts had been made to reduce salinity level through electrodialysis. The objective of this study was to eliminate dissolved salts in the hydrolysate in order to optimize the process of fermentation and increase ethanol yield. The results showed that the process of desalination by electrodialysis was able to reduce the salinity of 20% on the voltage of 5 V for 30 minutes; the voltage 9 V for 15 minutes; the voltage 12 V for 30 minutes. The lowest decline of SO42- occurred at treatment of 12 V for 45 minutes. The content of sulfate in the treatment decreased to 2.97 g/l or 46.22%. The more sulfate is reduced through the electrodialysis process, the better the fermentation process is carried out. Desalination treatment at a voltage of 5 V for 30 minutes had been the best treatment because it    produced the highest ethanol yield of 2.06%. All the voltage treatments and the length of time on the electrodialysis process had a significant influence on the levels of ethanol yield. The process of desalination by electrodialysis was able to reduce the levels of dissolved salts, then it had a significant effect on ethanol yield.


Bioethanol, Eucheuma Cottonii, Desalination, Electrodialysis.

Full Text:



T. V. Ramachandra and D. Hebbale, “Bioethanol from macroalgae: Prospects and challenges,” Renewable and Sustainable Energy Reviews. 2020, doi: 10.1016/j.rser.2019.109479.

N. Dave, R. Selvaraj, T. Varadavenkatesan, and R. Vinayagam, “A critical review on production of bioethanol from macroalgal biomass,” Algal Research. 2019, doi: 10.1016/j.algal.2019.101606.

I. S. Tan, M. K. Lam, H. C. Y. Foo, S. Lim, and K. T. Lee, “Advances of macroalgae biomass for the third generation of bioethanol production,” Chinese Journal of Chemical Engineering. 2020, doi: 10.1016/j.cjche.2019.05.012.

L. P. Tuti Ariani, “The Effect Of Repetition Sprint Training Method Combined With The Level Of Physical Fitness Toward The Speed Of 100 Meter Run,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 3, 2021, doi: 10.52088/ijesty.v1i3.89.

A. Ellis and J. C. Jacquier, “Manufacture of food grade κ-carrageenan microspheres,” J. Food Eng., 2009, doi: 10.1016/j.jfoodeng.2009.03.030.

T. Imankulov, B. Daribayev, and S. Mukhambetzhanov, “Comparative analysis of parallel algorithms for solving oil recovery problem using cuda and opencl,” Int. J. Nonlinear Anal. Appl., vol. 12, no. 1, 2021, doi: 10.22075/IJNAA.2021.4809.

I. S. Tan and K. T. Lee, “Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study,” Bioresour. Technol., 2016, doi: 10.1016/j.biortech.2015.08.008.

I. G. Dharma Utamayasa, “Efect Physical Activity and Nutrition During The Covid-19 Pandemic,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 1, 2021, doi: 10.52088/ijesty.v1i1.58.

I. Y. Sunwoo et al., “Enhancement of Galactose Uptake from Kappaphycus alvarezii Hydrolysate Using Saccharomyces cerevisiae Through Overexpression of Leloir Pathway Genes,” Appl. Biochem. Biotechnol., 2020, doi: 10.1007/s12010-020-03422-7.

W. Sayed, A. Cabrol, R. Abdallah, S. Taha, A. Amrane, and H. Djelal, “Enhancement of ethanol production from synthetic medium model of hydrolysate of macroalgae,” Renew. Energy, 2018, doi: 10.1016/j.renene.2017.10.094.

M. J. García, G. Ríos, R. Ali, J. M. Bellés, and R. Serrano, “Comparative physiology of salt tolerance in Candida tropicalis and saccharomyces cerevisiae,” Microbiology, 1997, doi: 10.1099/00221287-143-4-1125.

Y. Khambhaty et al., “Kappaphycus alvarezii as a source of bioethanol,” Bioresour. Technol., 2012, doi: 10.1016/j.biortech.2011.10.015.


M. Jönsson, L. Allahgholi, R. R. R. Sardari, G. O. Hreggviosson, and E. N. Karlsson, “Extraction and modification of macroalgal polysaccharides for current and next-generation applications,” Molecules. 2020, doi: 10.3390/molecules25040930.

A. Susmozas et al., “Process strategies for the transition of 1G to advanced bioethanol production,” Processes. 2020, doi: 10.3390/pr8101310.

M. M. Ismail, G. A. Ismail, and M. M. El-Sheekh, “Potential assessment of some micro- and macroalgal species for bioethanol and biodiesel production,” Energy Sources, Part A Recover. Util. Environ. Eff., 2020, doi: 10.1080/15567036.2020.1758853.

G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Anal. Chem., 1959, doi: 10.1021/ac60147a030.

A. Luiz, E. Spencer, D. D. McClure, H. G. L. Coster, G. W. Barton, and J. M. Kavanagh, “Membrane selection for the desalination of bio-refinery effluents using electrodialysis,” Desalination, 2018, doi: 10.1016/j.desal.2017.11.006.

L. J. Banasiak, T. W. Kruttschnitt, and A. I. Schäfer, “Desalination using electrodialysis as a function of voltage and salt concentration,” Desalination, 2007, doi: 10.1016/j.desal.2006.04.038.

S. A. Jambo, R. Abdulla, H. Marbawi, and J. A. Gansau, “Response surface optimization of bioethanol production from third generation feedstock - Eucheuma cottonii,” Renew. Energy, 2019, doi: 10.1016/j.renene.2018.07.133.

M. A. Franden, H. M. Pilath, A. Mohagheghi, P. T. Pienkos, and M. Zhang, “Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates,” Biotechnol. Biofuels, 2013, doi: 10.1186/1754-6834-6-99.

A. Almagro et al., “Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions,” Int. J. Food Microbiol., 2000, doi: 10.1016/S0168-1605(00)00220-8.

E. Casey, N. S. Mosier, J. Adamec, Z. Stockdale, N. Ho, and M. Sedlak, “Effect of salts on the Co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae,” Biotechnol. Biofuels, 2013, doi: 10.1186/1754-6834-6-83.

I. U. M. Roldán et al., “Chemical, structural, and ultrastructural analysis of waste from the carrageenan and sugar-bioethanol processes for future bioenergy generation,” Biomass and Bioenergy, 2017, doi: 10.1016/j.biombioe.2017.10.008.

N. Lerkkasemsan and W. C. Lee, “Study of ethanol fermentation reaction using Saccharomyces diastaticus in a two-tank fermentation system with cell recycling,” J. Taiwan Inst. Chem. Eng., 2018, doi: 10.1016/j.jtice.2018.06.001.

S. Hossein Helalat, S. Bidaj, S. Samani, and M. Moradi, “Producing alcohol and salt stress tolerant strain of Saccharomyces cerevisiae by heterologous expression of pprI gene,” Enzyme Microb. Technol., 2019, doi: 10.1016/j.enzmictec.2019.01.008.

S. Helle, D. Cameron, J. Lam, B. White, and S. Duff, “Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae,” Enzyme Microb. Technol., 2003, doi: 10.1016/S0141-0229(03)00214-X.

J. Fakhrudin, D. Setyaningsih, and M. Rahayuningsih, “Bioethanol Production from Seaweed Eucheuma cottonii by Neutralization and Detoxification of Acidic Catalyzed Hydrolysate,” Int. J. Environ. Sci. Dev., 2014, doi: 10.7763/ijesd.2014.v5.526.

E. P. Knoshaug, T. Dong, R. Spiller, N. Nagle, and P. T. Pienkos, “Pretreatment and fermentation of salt-water grown algal biomass as a feedstock for biofuels and high-value biochemicals,” Algal Res., 2018, doi: 10.1016/j.algal.2018.10.024.

L. J. Jönsson, B. Alriksson, and N.-O. Nilvebrant, “Bioconversion of lignocellulose: inhibitors and detoxification.,” Biotechnol. Biofuels, 2013, doi: 10.1186/1754-6834-6-16.

L. R. Roque, G. P. Morgado, V. M. Nascimento, J. L. Ienczak, and S. C. Rabelo, “Liquid-liquid extraction: A promising alternative for inhibitors removing of pentoses fermentation,” Fuel, 2019, doi: 10.1016/j.fuel.2018.12.130.

B. Singh, P. Kumar, A. Yadav, and S. Datta, “Degradation of fermentation inhibitors from lignocellulosic hydrolysate liquor using immobilized bacterium, Bordetella sp. BTIITR,” Chem. Eng. J., 2019, doi: 10.1016/j.cej.2018.12.168.

K. Watanabe, S. Tachibana, and M. Konishi, “Modeling growth and fermentation inhibition during bioethanol production using component profiles obtained by performing comprehensive targeted and non-targeted analyses,” Bioresour. Technol., 2019, doi: 10.1016/j.biortech.2019.02.081.



  • There are currently no refbacks.

Copyright (c) 2021 Jaini Fakhrudin, Dwi Setyaningsih, Mulyorini Rahayuningsih

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674