Sterilizer Reliability Analysis Using Reliability Block Diagram Based on Failure Identification Through Fault Tree Analysis
Abstract
Keywords
Full Text:
PDFReferences
M. Jiménez-Rosado, V. Perez-Puyana, A. Guerrero, and A. Romero, “Controlled release of zinc from soy protein-based matrices to plants,†Agronomy, vol. 11, no. 3, 2021, doi: 10.3390/agronomy11030580.
M. Mardani Shahri, A. Eshraghniaye Jahromi, and M. Houshmand, “Failure Mode and Effect Analysis using an integrated approach of clustering and MCDM under pythagorean fuzzy environment,†J. Loss Prev. Process Ind., vol. 72, p. 104591, 2021, doi: https://doi.org/10.1016/j.jlp.2021.104591.
J. Zhu, B. Shuai, G. Li, K.-S. Chin, and R. Wang, “Failure mode and effect analysis using regret theory and PROMETHEE under linguistic neutrosophic context,†J. Loss Prev. Process Ind., vol. 64, p. 104048, 2020, doi: https://doi.org/10.1016/j.jlp.2020.104048.
A.-Y. Yu, H.-C. Liu, L. Zhang, and Y. Chen, “A new data envelopment analysis-based model for failure mode and effect analysis with heterogeneous information,†Comput. Ind. Eng., vol. 157, p. 107350, 2021, doi: https://doi.org/10.1016/j.cie.2021.107350.
G. Huang, L. Xiao, and G. Zhang, “Improved failure mode and effect analysis with interval-valued intuitionistic fuzzy rough number theory,†Eng. Appl. Artif. Intell., vol. 95, p. 103856, 2020, doi: https://doi.org/10.1016/j.engappai.2020.103856.
M. J. Kalathil, V. R. Renjith, and N. R. Augustine, “Failure mode effect and criticality analysis using dempster shafer theory and its comparison with fuzzy failure mode effect and criticality analysis: A case study applied to LNG storage facility,†Process Saf. Environ. Prot., vol. 138, pp. 337–348, 2020, doi: https://doi.org/10.1016/j.psep.2020.03.042.
H. Li, H. Diaz, and C. Guedes Soares, “A developed failure mode and effect analysis for floating offshore wind turbine support structures,†Renew. Energy, vol. 164, pp. 133–145, 2021, doi: https://doi.org/10.1016/j.renene.2020.09.033.
M. Tang and H. Liao, “Failure mode and effect analysis considering the fairness-oriented consensus of a large group with core-periphery structure,†Reliab. Eng. Syst. Saf., vol. 215, p. 107821, 2021, doi: https://doi.org/10.1016/j.ress.2021.107821.
R. Sireesha, C. Srinivasa Rao, and M. Vijay Kumar, “Graph theory based transformation of existing Distribution network into clusters of multiple micro-grids for reliability enhancement,†Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2021.07.067.
T. Cui and S. Li, “System movement space and system mapping theory for reliability of IoT,†Futur. Gener. Comput. Syst., vol. 107, pp. 70–81, 2020, doi: https://doi.org/10.1016/j.future.2020.01.040.
L. Wang, Y. Liu, D. Liu, and Z. Wu, “A novel dynamic reliability-based topology optimization (DRBTO) framework for continuum structures via interval-process collocation and the first-passage theories,†Comput. Methods Appl. Mech. Eng., vol. 386, p. 114107, 2021, doi: https://doi.org/10.1016/j.cma.2021.114107.
J.-M. Hu, H.-Z. Huang, and Y.-F. Li, “Reliability growth planning based on information gap decision theory,†Mech. Syst. Signal Process., vol. 133, p. 106274, 2019, doi: https://doi.org/10.1016/j.ymssp.2019.106274.
P. E. Clayson, K. A. Carbine, S. A. Baldwin, J. A. Olsen, and M. J. Larson, “Using generalizability theory and the ERP Reliability Analysis (ERA) Toolbox for assessing test-retest reliability of ERP scores part 1: Algorithms, framework, and implementation,†Int. J. Psychophysiol., vol. 166, pp. 174–187, 2021, doi: https://doi.org/10.1016/j.ijpsycho.2021.01.006.
M. L. Koç and D. Imren Koç, “A cloud theory based reliability analysis method and its application to reliability problems of breakwaters,†Ocean Eng., vol. 209, p. 107534, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.107534.
Y. Liu, L. Deng, W. Zhong, J. Xu, and W. Xiong, “A new fatigue reliability analysis method for steel bridges based on peridynamic theory,†Eng. Fract. Mech., vol. 236, p. 107214, 2020, doi: https://doi.org/10.1016/j.engfracmech.2020.107214.
J. Wang, Q. Zhang, S. Yoon, and Y. Yu, “Reliability and availability analysis of a hybrid cooling system with water-side economizer in data center,†Build. Environ., vol. 148, pp. 405–416, 2019, doi: https://doi.org/10.1016/j.buildenv.2018.11.021.
J. E. Staley and P. S. Sutcliffe, “Reliability block diagram analysis,†Microelectron. Reliab., vol. 13, no. 1, pp. 33–47, 1974, doi: https://doi.org/10.1016/0026-2714(74)90209-1.
W. Ahmed, O. Hasan, and S. Tahar, “Formalization of Reliability Block Diagrams in Higher-order Logic,†J. Appl. Log., vol. 18, pp. 19–41, 2016, doi: https://doi.org/10.1016/j.jal.2016.05.007.
G. Kaczor, S. Młynarski, and M. Szkoda, “Verification of safety integrity level with the application of Monte Carlo simulation and reliability block diagrams,†J. Loss Prev. Process Ind., vol. 41, pp. 31–39, 2016, doi: https://doi.org/10.1016/j.jlp.2016.03.002.
L. Jia, Y. Ren, D. Yang, Q. Feng, B. Sun, and C. Qian, “Reliability analysis of dynamic reliability block diagram based on dynamic uncertain causality graph,†J. Loss Prev. Process Ind., vol. 62, p. 103947, 2019, doi: https://doi.org/10.1016/j.jlp.2019.103947.
J.-P. Signoret, Y. Dutuit, P.-J. Cacheux, C. Folleau, S. Collas, and P. Thomas, “Make your Petri nets understandable: Reliability block diagrams driven Petri nets,†Reliab. Eng. Syst. Saf., vol. 113, pp. 61–75, 2013, doi: https://doi.org/10.1016/j.ress.2012.12.008.
L. Xie, M. A. Lundteigen, and Y. Liu, “Performance analysis of safety instrumented systems against cascading failures during prolonged demands,†Reliab. Eng. Syst. Saf., vol. 216, p. 107975, 2021, doi: https://doi.org/10.1016/j.ress.2021.107975.
DOI: https://doi.org/10.52088/ijesty.v2i1.190
Article Metrics
Abstract view : 241 timesPDF - 122 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Syamsul Bahri, Fatimah Fatimah, Saifuddin Muhammad Jalil, A Amri, Muhammad Ilham