Oyster Shell Waste (Crassostrea Gigas) as A Cheap Adsorbent for Adsorption Of Methylene Blue Dyes: Equilibrium and Kinetics Studies

Muhammad Muhammad, Meriatna Meriatna, Nia Afriani, Rizka Mulyawan


In this study, Oyster (Crassostrea gigas) shell powder which contains calcium carbonate (CaCO3) was converted into calcium oxide (CaO). The Oyster shell powder that had been activated was utilized for the adsorption of the methylene blue (MB) dyeing material, which is one of waste water concerns. Oyster shells were crushed and sieved into 100 mesh sized powder and then calcinated at a temperature of 600℃ and 800℃ both for 4 hours period. To determine the adsorption equilibrium, methylene blue (MB) solution was used with varying concentration from 10 to 50 mg/L in which the adsorbent weighing 3 g was put into a conical flash and shaken until the adsorption equilibrium was reached. As for the adsorption kinetics, 250 mL MB solution was used with initial concentrations of 10, 20 and 30 mg/L, with an adsorbent weight of 3 g and a solution at pH 11 for each concentration. The evaluation of the experimental data from the adsorption process is well explained by the Freundlich equation, with the correlation coefficient value (R2) found to be 0.9999, where the value of the adsorption intensity (n) is close to unity; this shows that the adsorption is multilayer or in other words the adsorption energy is heterogeneous. The kinetics study also shows that pseudo second-order model is the most applicable to the adsorption process. From the pseudo-second-order model, with the correlation coefficient between 0.9984 - 0.9999 can explain that the methylene blue (MB) adsorption process is chemically based sorption or in other words termed as chemisorption.


Adsorption, Oyster Shell, Equilibrium, Kinetics, Methylene Blue.

Full Text:



H. Yanti, M. Muliani, and M. Khalil, “Pengaruh salinitas yang berbeda terhadap tingkat pertumbuhan dan kelangsungan hidup tiram (Crassostrea sp),” Acta Aquat. Aquat. Sci. J., vol. 4, no. 2, pp. 53–58, 2017.

L. Handayani and F. Syahputra, “Isolasi dan karakterisasi nanokalsium dari cangkang tiram (Crassostrea gigas),” JPHPI, vol. 20, no. 3, pp. 515–523, 2017.

E. C. Siregar, S. Suryati, and L. Hakim, “Pengaruh suhu dan waktu reaksi pada pembuatan kitosan dari tulang sotong (Sepia officinalis),” J. Teknol. Kim. Unimal, vol. 5, no. 2, pp. 37–44, 2017.

A. Aji and M. Meriatna, “Pembuatan Kitosan Dari Limbah Cangkang Kepiting,” J. Teknol. Kim. Unimal, vol. 1, no. 1, pp. 79–90, 2017.

K. Navi and E. Navi, “Nonlinear effect of changing the temperature to overcome Covid-19,” International Journal of Nonlinear Analysis and Applications, vol. 11, no. 1. 2020, doi: 10.22075/IJNAA.2020.4355.

Y. H. Zhang, Y. S. Szeto, S. J. Ke, W. Tan, and L. B. Liao, “Dyeing and finishing effluent treatment with chitosan/inorganic composites,” in Key Engineering Materials, 2007, vol. 334, pp. 1069–1072.

G. Z. Kyzas, M. Kostoglou, A. A. Vassiliou, and N. K. Lazaridis, “Treatment of real effluents from dyeing reactor: Experimental and modeling approach by adsorption onto chitosan,” Chem. Eng. J., vol. 168, no. 2, pp. 577–585, 2011.

B. Guan, W. Ni, Z. Wu, and Y. Lai, “Removal of Mn (II) and Zn (II) ions from flue gas desulfurization wastewater with water-soluble chitosan,” Sep. Purif. Technol., vol. 65, no. 3, pp. 269–274, 2009.

T. Y. Liu, L. Zhao, and Z. L. Wang, “Removal of hexavalent chromium from wastewater by Fe0-nanoparticles-chitosan composite beads: characterization, kinetics and thermodynamics,” Water Sci. Technol., vol. 66, no. 5, pp. 1044–1051, 2012.

N. A. Oladoja, C. M. A. Ademoroti, and I. O. Asia, “Treatment of industrial effluents using fortified soil-clay,” Desalination, vol. 197, no. 1–3, pp. 247–261, 2006.

N. Kadkhoda, H. Jafari, and R. M. Ganji, “A numerical solution of variable order diffusion and wave equations,” Int. J. Nonlinear Anal. Appl., vol. 12, no. 1, 2020, doi: 10.22075/ijnaa.2021.4652.

W. S. & K. Wong et al., “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” J. Pendidik. Malaysia, 2018.

R. Rinaldy and M. Ikhsan, “Determinant Analysis Of Conflict On Project Results In Aceh Province,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 1, 2021, doi: 10.52088/ijesty.v1i1.37.

Z. Azmi, “Artificial Neural Network Model For Wind Mill,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 3, 2021, doi: 10.52088/ijesty.v1i3.84.

Z. Soares Lopes, F. Kurniawan, and J. Tistogondo, “Case Study of Public-Private Partnership on Infrastruc-ture Projects of Tibar Bay Port in Timor-Leste,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 3, 2021, doi: 10.52088/ijesty.v1i3.79.

F.-C. Tsai et al., “Adsorptive removal of methyl orange from aqueous solution with crosslinking chitosan microspheres,” J. Water Process Eng., vol. 1, pp. 2–7, 2014.

R. H. Buti and A. K. Sachit, “On subclass of analytic univalent functions defined by fractional differ-integral operator i,” Int. J. Nonlinear Anal. Appl., vol. 12, no. Special Issue, 2021, doi: 10.22075/IJNAA.2021.4844.

R. R. Siregar, “STRUKTUR POPULASI TIRAM PASIFIK ( Crassostrea gigas, Thunberg 1793 ) DI PABEAN ILIR, INDRAMAYU,” 2017.

L. Handayani and F. Syahputra, “Isolasi dan Karakteristik Nanokalsium dari Cangkang Tiram (Crassostrea gigas),” J. Pengolah. Has. Perikan. Indones., vol. 20, pp. 515–523, 2017.

L. Maghfiroh, “Adsorpsi zat warna tekstil remazol brilliant blue menggunakan zeolit yang disintesis dari abu layang batubara,” 2016.

A. Tahad and A. S. Sanjaya, “Isoterm Freundlich, Model Kinetika, dan Penentuan Laju Reaksi Adsorpsi Besi dengan Arang Aktif dari Ampas Kopi,” J. Chemurg., vol. 1, no. 2, pp. 13–21, 2018.

A. S. Sanjaya and R. P. Agustine, “Studi Kinetika Adsorpsi Pb Menggunakan Arang Aktif dari Kulit Pisang,” Konversi, vol. 4, no. 1, pp. 17–24, 2015.

P. Kurniawatia, B. Wiyantokoa, A. Kurniawanb, and Tri Esti Purbaningtias, “Kinetic study of Cr(VI) Adsorption on Hydrotalcite Mg/Al with Molar Ratio 2:1,” EKSAKTA, vol. 13, no. 1–2, pp. 11–21, 2013.

M. F. J. D. P. Tanasale, A. Killay, and M. S. Laratmase, “Kitosan dari Limbah Kulit Kepiting Rajungan ( Portunus sanginolentus L .) sebagai Adsorben Zat Warna Biru Metilena,” J. Natur Indones., vol. 14, no. 2, pp. 165–171, 2014.

Muhammad, T. G. Chuah, Y. Robiah, A. R. Suraya, and T. S. Y. Choong, “Single and binary adsorptions isotherms of Cd (II) and Zn (II) on palm kernel shell based activated carbon,” Desalin. Water Treat., vol. 29, no. 1–3, pp. 140–148, 2011.

C. L. K. Nazar, Muhammad,. Syahrial,. & Sari, “Pembuatan CaO dari Cangkang Telur sebagai Katalis Untuk Konversi Minyak Kelapa menjadi Biodiesel,” Sains Sci. Educ. Proceeding Natl. Semin., vol. 22, 2013.


T. Kou, Y. Wang, C. Zhang, J. Sun, and Z. Zhang, “Adsorption behavior of methyl orange onto nanoporous core–shell Cu@ Cu2O nanocomposite,” Chem. Eng. J., vol. 223, pp. 76–83, 2013.

V. Vadivelan and K. V. Kumar, “Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk,” J. Colloid Interface Sci., vol. 286, no. 1, pp. 90–100, 2005.

C. W. Cheung, J. F. Porter, and G. McKay, “Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char,” Water Res., vol. 35, no. 3, pp. 605–612, 2001.

DOI: https://doi.org/10.52088/ijesty.v1i4.178


  • There are currently no refbacks.

Copyright (c) 2021 Muhammad Muhammad, Meriatna Meriatna, Nia Afriani, Rizka Mulyawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674