Sales Forecasting by Using Exponential Smoothing Method and Trend Method to Optimize Product Sales in PT. Zamrud Bumi Indonesia During the Covid-19 Pandemic

Virgin Wineka Nirmala, Dikdik Harjadi, Robi Awaluddin

Abstract


Forecasting is important for a company in achieving goals effectively and efficiently. Forecasting aims to determine the next steps to be taken based on historical data. PT. Zamrud Bumi Indonesia is one of the manufacturing companies in the management of agricultural liquid fertilizers with the trademark “Power Bumi”. The purpose of this study is to analyze the sales pattern of Power Bumi products during the covid-19 pandemic and compare the forecasting method that is able to produce the smallest error value in forecasting sales of Power Bumi products PT. Zamrud Bumi Indonesia. This study uses 2 methods, namely exponential smoothing and least square trend model. To calculate the error rate using MAD, MSE and MAPE. The results show that the exponential smoothing alpha 0.9 method has the smallest error value compared to other forecasting methods. In forecasting product sales, the MAD value is 130.329, MSE is 28251.23 and MAPE is 22.00% with a forecast of 627.628 boxes. Although the exponential smoothing a 0.9 method produces a forecast value that is relatively low than other methods. However, the comparison of products sold and forecasting results has a relatively small average difference (MSE). It can be interpreted that the exponential smoothing a 0.9 method is able to suppress the forecasting error value for the 2nd period. After getting the forecasting results, it can be concluded that the number of products sold for the 2nd covid-19 pandemic period will not differ much from the number of sales in the 1st covid-19 pandemic period. If the company applies this scientific forecasting method, then sales will be optimal so that excess or shortage of stock can be avoided and the predetermined sales target can be achieved. In addition, the costs incurred during the production process to sales will be more efficient.


Keywords


Sales Forecasting, Fertilizer, Exponential Smoothing, Trend, Least Square

Full Text:

PDF

References


OECD, “Covid-19: SME Policy Responses,” Oecd 2020, no. March, pp. 1–55, 2020, [Online]. Available: https://oecd.dam-broadcast.com/pm_7379_119_119680-di6h3qgi4x.pdf.

A. S. Maulana and A. Nubatonis, “Dampak Pandemi Covid-19 terhadap Kinerja Nilai Ekspor Pertanian Indonesia,” J. Agribisnis Lahan Kering, vol. 5, no. 4, pp. 69–71, 2020, doi: 10.32938/ag.v5i4.1166.

R. T. Prasetio, “Inventory Control Using Statistics Forecasting on Manufacturing Company,” J. Inform., vol. II, no. 2, pp. 136–142, 2014.

Ulia Ulfa, Sumijan, and G. W. Nurcahyo, “Peramalan Penjualan Pupuk Menggunakan Metode Trend Moment,” J. Inform. Ekon. Bisnis, vol. 1, no. 4, pp. 8–14, 2019, doi: 10.37034/infeb.v1i4.4.

D. I. Pebri Sentika, A. A. Yusuf, and R. Awaluddin, “PERAMALAN PENJUALAN DENGAN METODE EXPONENTIAL SMOOTHING DAN METODE LEAST SQUARE GUNA MENGOPTIMALKAN PENJUALAN PRODUK NUGGET MAILA,” vol. 14, no. 1, pp. 110–118, 2021.

R. Yuniarti, “Analisa Metode Single Exponential Smoothing ( Studi Kasus : Lokatara Dimsum ),” J. Manaj. Bisnis, pp. 29–33, 2020.

C. Rahmad, R. S. Wibowo, and D. Puspitasari, “Peramalan Penjualan Daging Sapi Menggunakan Metode Trend Least Square,” J. Teknol. Inf. dan Terap., vol. 6, no. 1, pp. 7–11, 2019, doi: 10.25047/jtit.v6i1.104.

E. Widajanti and Suprayitno, “Implementasi Metode Least Square Untuk Memprediksi Penjualan Susu Perah ( Studi Pada Kud Cepogo Kabupaten Boyolali),” Res. Fair UNISRI, vol. 4, no. 1, pp. 439–451, 2020.

S. Kumar Paul, “Determination of exponential smoothing constant to minimize mean square error and mean absolute deviation,” Glob. J. Res. Eng., vol. 11, no. 3, pp. 30–34, 2011.

T. D. Andini and P. Auristandi, “Peramalan Jumlah Stok Alat Tulis Kantor di UD Achmad Jaya Menggunakan Metode Double Exponential Smoothing,” J. Ilm. Teknol. Inf. Asia, vol. 10, no. 1, pp. 1–10, 2016.

R. Rachman, “Penerapan Metode Moving Average dan Exponential Smoothing pada Peramalan Produksi Industri Garment,” J. Inform., vol. 5, no. 1, pp. 211–220, 2018.

R. Yudaruddin, FORECASTING: untuk Kegiatan Ekonomi dan Bisnis. Samarinda: RV Pustaka Horizon Anggota IKAPI, 2019.

R. D. Snyder, A. B. Koehler, and J. K. Ord, “Forecasting for inventory control with exponential smoothing,” Int. J. Forecast., vol. 18, no. 1, pp. 5–18, 2002, doi: 10.1016/S0169-2070(01)00109-1.

R. Josenda and C. I. Asmarawati, “Analisa Peramalan Produk Palet Kayu di CV. Barokah Urama,” J. Comasie, vol. 01, pp. 53–61, 2021.

S. Nugroho, “Penerapan Metode Least Square Untuk Sistem Peramalan Penjualan Berbasis Website (Studi Kasus : Ojan Sport Yogyakarta),” Dr. Diss. Univ. Technol. Yogyakarta, 2020.

Makridakis, Wheelwright, and McGee, Metode dan Aplikasi Peramalan, Second Edi. Jakarta: Binarupa Aksara, 1999.

O. P. Hutajulu, “Kajian Peramalan Permintaan dan Perencanaan Optimasi Produksi Semen Pada Plant 11 PT Indocement Tunggal Prakarsa Tbk,” Institut Pertanian Bogor, 2010.

F. Sidqi, I. D. Sumitra, J. Dipati, U. No, and J. Barat, “Peramalan Penjualan Barang Single Variant Menggunakan Metode ARIMA , Trend Analysis , Dan Single (Studi Kasus : Toko Swalayan XYZ ),” 2019.

P. D. Sugiyono, Metode Penelitian Kuantitatif, 1st ed. Bandung: Alfabeta, 2018.

D. Aditia, D. Nasution, F. S. Sains, U. Pembangunan, P. Budi, and U. S. Utara, “Dampak Pandemi Covid-19 Terhadap Perekonomian Indonesia,” J. Benefita, vol. 5, no. 2, pp. 212–224, 2020.

Minakshi, “Applications of Mathematics in Various Economic Fields,” Res. J. Sci. Technol., vol. 9, no. 1, p. 175, 2017, [Online]. Available: https://doi.org/10.5958/2349-2988.2017.00029.8.

D. Firnando, “Analisis Peramalan Penjualan Buncis Super di Gapoktan XXX Bandung Barat,” Karya Ilm. Mhs., no. 2, pp. 1–10.

M. Dekker, K. Van Donselaar, and P. Ouwehand, “How to use aggregation and combined forecasting to improve seasonal demand forecasts,” Int. J. Prod. Econ., vol. 90, no. 2, pp. 151–167, 2004, doi: 10.1016/j.ijpe.2004.02.004.

J. Heizer and B. Render, Manajemen Operasi: Manajemen Keberlangsungan dan Rantai Pasokan, 11th ed. Jakarta: Salemba Empat, 2015.

S. Aras, İ. Deveci Kocakoç, and C. Polat, “Comparative Study on Retail Sales Forecasting Between Single and Combination Methods,” J. Bus. Econ. Manag., vol. 18, no. 5, pp. 803–832, 2017, doi: 10.3846/16111699.2017.1367324.

G. Sbrana and A. Silvestrini, “Random switching exponential smoothing: A new estimation approach,” Int. J. Prod. Econ., vol. 211, no. February, pp. 211–220, 2019, doi: 10.1016/j.ijpe.2019.01.038.




DOI: https://doi.org/10.52088/ijesty.v1i4.169

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Virgin Wineka Nirmala, Dikdik Harjadi, Robi Awaluddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674