Comparison of LSTM and TCN Models for Customer Churn Prediction Based on Sentiment and Transaction Data
Abstract
This study investigates the combined use of customer review sentiment analysis and transaction history to predict customer churn on the Balimall Market e-commerce platform. The dataset includes 41,519 reviews labeled with positive and negative sentiments and 48 transaction samples labeled as churn or non-churn based on RFM method. Two deep learning models, Long Short-Term Memory (LSTM) and Temporal Convolutional Network (TCN), are applied in parallel for each analysis path. Data pre-processing includes filtering, cleaning, tokenizing, normalization, sentiment labeling, as well as feature engineering and churn labeling. Evaluation using accuracy, precision, recall, F1-score, and confusion matrix metrics shows that TCN excels with 91.55% accuracy on sentiment analysis and 91.67% on churn prediction, while LSTM achieves 86.35% and 86.67% respectively. Segment analysis shows that 47.30 % of users express negative sentiment yet remain active, 51.69 % express positive sentiment and remain active , 0.54 % express negative sentiment and churn, and 0.48 % express positive sentiment and churn. This finding demonstrates that negative sentiment alone does not necessarily lead to churn; instead, the greatest churn risk arises in negative sentiment churners and positive sentiment churners. Expert validation confirmed the reliability of both models, with the recommendation of using a hybrid to combine the advantages of each architecture. The results of this study are expected to help Baliyoni Group design a more targeted customer retention strategy and improve customer satisfaction by examining these segment conditions.
Keywords
References
K. HAJI, “E-commerce development in rural and remote areas of BRICS countries,” J. Integr. Agric., vol. 20, no. 4, pp. 979–997, 2021, doi: 10.1016/S2095-3119(20)63451-7.
M. Xi, Z. Luo, N. Wang, and J. Yin, “A Latent Feelings-aware RNN Model for User Churn Prediction with Behavioral Data,” Nov. 2019.
Y. Gaidhani et al., “AI-Driven Predictive Analytics for CRM to Enhance Retention Personalization and Decision-Making,” Int. J. Adv. Comput. Sci. Appl., vol. 16, no. 4, pp. 552–563, 2025, doi: 10.14569/IJACSA.2025.0160456.
C. G. Mena, A. De Caigny, K. Coussement, K. W. De Bock, and S. Lessmann, “Churn Prediction with Sequential Data and Deep Neural Networks. A Comparative Analysis,” Sep. 2019.
G. Mena, K. Coussement, K. W. De Bock, A. De Caigny, and S. Lessmann, “Exploiting time-varying RFM measures for customer churn prediction with deep neural networks,” Ann. Oper. Res., vol. 339, no. 1–2, pp. 765–787, 2024, doi: 10.1007/s10479-023-05259-9.
W. Wu, Y. Zhang, and Y. Fan, “ICT Empowers the Formation and Development of Rural E-Commerce in China,” IEEE Access, vol. 8, pp. 135264–135283, 2020, doi: 10.1109/ACCESS.2020.3011593.
S. Zhang, D. Zhang, H. Zhong, and G. Wang, “A multiclassification model of sentiment for e-commerce reviews,” IEEE Access, vol. 8, pp. 189513–189526, 2020, doi: 10.1109/ACCESS.2020.3031588.
G. Li, Q. S. Zheng, L. Zhang, S. Z. Guo, and L. Y. Niu, “Sentiment Infomation based Model for Chinese text Sentiment Analysis,” in 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering, AUTEEE 2020, Nov. 2020, pp. 366–371. doi: 10.1109/AUTEEE50969.2020.9315668.
D. Putrisia and K. M. Lhaksmana, “El Niño Sentiment Analysis Using Recurrent Neural Network and Convolutional Neural Network Use GloVe,” Technol. Sci., vol. 6, no. 1, 2024, doi: 10.47065/bits.v6i1.5284.
Y. Azzery, “Analysis of E-commerce Growth in the Industrial Age 4.0 in Indonesia,” Int. J. Eng. Contin., vol. 1, 2022, doi: 10.58291/ijec.v1n1.33.
H. Kim and G. Qin, “Summarizing Students’ Free Responses for an Introductory Algebra-Based Physics Course Survey Using Cluster and Sentiment Analysis,” IEEE Access, vol. 11, pp. 89052–89066, 2023, doi: 10.1109/ACCESS.2023.3305260.
R. Li, Z. Ouyang, Z. Shang, L. Jia, and X. Li, “Learning Common and Label-Specific Features for Multi-Label Classification With Missing Labels,” IEEE Access, vol. 12, pp. 81170–81195, 2024, doi: 10.1109/ACCESS.2024.3411095.
H. Kour and M. K. Gupta, “Hybrid LSTM-TCN Model for Predicting Depression using Twitter Data,” 2022 17th Int. Conf. Control. Autom. Robot. Vis., pp. 167–172, 2022, doi: 10.1109/ICARCV57592.2022.10004238.
M. Deng, “Machine Learning Advances in Technology Applications: Cultural Heritage Tourism Trends in Experience Design,” Int. J. Adv. Comput. Sci. Appl., vol. 16, no. 4, pp. 186–196, 2025, doi: 10.14569/IJACSA.2025.0160420.
D. Cao, Y. Huang, H. Li, X. Zhao, Q. Zhao, and Y. Fu, “Text Sentiment Classification Based on LSTM-TCN Hybrid Model and Attention Mechanism,” Proc. 4th Int. Conf. Comput. Sci. Appl. Eng., 2020, doi: 10.1145/3424978.3425092.
H. Ghallab, M. Nasr, and H. Fahmy, “Mitigating Catastrophic Forgetting in Continual Learning Using the Gradient-Based Approach: A Literature Review,” Int. J. Adv. Comput. Sci. Appl., vol. 16, no. 4, pp. 120–130, 2025, doi: 10.14569/IJACSA.2025.0160414.
B. K. Shrivash, D. K. Verma, and P. Pandey, “An Effective Framework for Sentiment Analysis Using RNN and LSTM-Based Deep Learning Approaches,” in ICACDS, 2023. doi: 10.1007/978-3-031-37940-6_28.
X. Wen and W. Li, “Time Series Prediction Based on LSTM-Attention-LSTM Model,” IEEE Access, vol. 11, pp. 48322–48331, 2023, doi: 10.1109/ACCESS.2023.3276628.
F. Wu, J. Liu, J. Yang, L. Zhang, Y. He, and Z. Lin, “Learning multiband-Temporal-spatial EEG representations of emotions using lightweight temporal convolution and 3D convolutional neural network,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3460393.
L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations,” Organ. Res. Methods, vol. 25, pp. 114–146, 2020, doi: 10.1177/1094428120971683.
F. Yulidayanti, Safwandi, “Sentiment Analysis of Free Online Novel Applications Using the Support Vector Machine Method,” Int. J. Eng. Sci. Inf. Technol., vol. 5, no. 1, pp. 340–349, 2025, doi: 10.52088/ijesty.v5i1.732.
Y. A. Tursina Dewi, Asrianda Asrianda, “Sentiment Analysis of Customer Satisfaction Towards Shopee and Lazada E-commerce Platform Using the Random Forest Algorithm Classifier,” Int. J. Eng. Sci. Inf. Technol., vol. 5, no. 1, pp. 229–235, 2025, doi: 10.52088/ijesty.v5i1.692.
D. A. Naik, S. Mythreyan, and S. Seema, “Relevance Feature Discovery in Text Mining Using NLP,” 2022 3rd Int. Conf. Emerg. Technol., pp. 1–6, 2022, doi: 10.1109/incet54531.2022.9824807.
C. P. Chai, “Comparison of text preprocessing methods,” Nat. Lang. Eng., vol. 29, pp. 509–553, 2022, doi: 10.1017/S1351324922000213.
F. Alshanik, A. W. Apon, A. Herzog, I. Safro, and J. Sybrandt, “Accelerating Text Mining Using Domain-Specific Stop Word Lists,” 2020 IEEE Int. Conf. Big Data (Big Data), pp. 2639–2648, 2020, doi: 10.1109/BigData50022.2020.9378226.
P. Bratke, R. Zimmermann, and R. Blum, “Fostering text mining with knowledge graphs: An approach to support business experts in defining domain-specific document sets,” Hum. Side Serv. Eng., 2023, doi: 10.54941/ahfe1003128.
A. Perivsi? and M. Pahor, “RFM-LIR Feature Framework for Churn Prediction in the Mobile Games Market,” IEEE Trans. Games, vol. 14, pp. 126–137, 2022, doi: 10.1109/TG.2021.3067114.
Y. T. Naing, M. Raheem, and N. K. Batcha, “Feature Selection for Customer Churn Prediction: A Review on the Methods & Techniques applied in the Telecom Industry,” 2022 IEEE Int. Conf. Distrib. Comput. Electr. Circuits Electron., pp. 1–5, 2022, doi: 10.1109/icdcece53908.2022.9793315.
H. Hendro, A. M. Shiddiqi, and A. Saikhu, “Feature Weighting using Gravitational Search Algorithm in Customer Churn Prediction,” Proc. Int. Conf. Comput. Mach. Learn. Data Sci., 2024, doi: 10.1145/3661725.3661787.
M. Hao, “Research on Customer Churn Prediction Based on PSO-SA Feature Selection Algorithm,” 2024 5th Int. Semin. Artif. Intell. Netw. Inf. Technol., pp. 1055–1059, 2024, doi: 10.1109/AINIT61980.2024.10581724.
J. Dias, “Machine Learning in Bank Customer Churn Prediction: Improving Accuracy through Feature Engineering,” Int. J. Res. Appl. Sci. Eng. Technol., 2025, doi: 10.22214/ijraset.2025.67002.
N. Alboukaey, A. Joukhadar, and N. Ghneim, “Dynamic behavior based churn prediction in mobile telecom,” Expert Syst. Appl., vol. 162, p. 113779, 2020, doi: 10.1016/j.eswa.2020.113779.
Q. Yang, “Research on E-commerce Customer Satisfaction Evaluation Method Based on PSO-LSTM and Text Mining,” 3C Empres. Investig. y Pensam. crítico, vol. 12, no. 01, pp. 51–66, Mar. 2023, doi: 10.17993/3cemp.2023.120151.51-66.
S. Abdul-Rahman, M. F. A. M. Ali, A. A. Bakar, and S. Mutalib, “Enhancing churn forecasting with sentiment analysis of steam reviews,” Soc. Netw. Anal. Min., vol. 14, p. 178, 2024, doi: 10.1007/s13278-024-01337-3.
G. Kazbekova, Z. Ismagulova, G. Ibrayeva, A. Sundetova, Y. Abdrazakh, and B. Baimurzayev, “Real-Time Lightweight Sign Language Recognition on Hybrid Deep CNN-BiLSTM Neural Network with Attention Mechanism,” Int. J. Adv. Comput. Sci. Appl., vol. 16, no. 4, pp. 510–522, 2025, doi: 10.14569/IJACSA.2025.0160452.
D. H. Rudd, H. Huo, M. R. Islam, and G. Xu, “Churn Prediction via Multimodal Fusion Learning: Integrating Customer Financial Literacy, Voice, and Behavioral Data,” 2023 10th Int. Conf. Behav. Soc. Comput., pp. 1–7, 2023, doi: 10.1109/BESC59560.2023.10386253.
E. A. el Kassem, S. A. Hussein, A. H. M. Abdelrahman, and F. K. Alsheref, “Customer Churn Prediction Model and Identifying Features to Increase Customer Retention based on User Generated Content,” Int. J. Adv. Comput. Sci. Appl., vol. 11, 2020, doi: 10.14569/ijacsa.2020.0110567.
DOI: https://doi.org/10.52088/ijesty.v5i4.979
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Made Bayu Brahmanda Dharmasaguna, Astari Retnowardhani




























