Study on Magnetic Properties Characterization of Aceh Iron Sand as Raw Biomedical Application Materials
Abstract
The magnetic properties characterization of Aceh iron sand as the preferred material for biomedical applications was studied. Meanwhile, Aceh's iron sand is used as raw cement-making material. It is hoped that in the future, it can be used in many different biological and medical applications, such as diagnostic tests for early disease detection, to serve as tools for non-invasive imaging and drug development. Samples of the natural resource were prepared using a magnetic separator, and the concentrates were mashed by the ball milling method to achieve 112.7µm (MK), 119.3 µm (MT), 112,4 µm (LP), and 115.1 µm (SK) particle size. These features were evaluated from loop hysteresis using a vibration sample magnetometer (VSM), while x-ray diffraction (XRD) was employed to analyze iron oxide. The results estimated the values of saturation magnetization, remanent magnetization, and coercivity from Mon Klayu, Mantak Tari, Lam Panah, and Syiah Kuala at 67.79 emu/g, 10.36 emu/g and 0.02 T; 83.49 emu/g, 13.22 emu/g and 0.02 T; 62.17 emu/g, 9.32 emu/g and 0.02 T; 73.26 emu/g, 10.34 emu/g and 0.02 T, respectively. However, Fe3O4 (magnetite) occurred predominantly in the selected locations.
Keywords
Full Text:
PDFReferences
M. Sayuti, A. Ibrahim, M. Yusuf, and R. Putra, ‘Development of Aceh iron sand to produce pig iron: Studies on hardness properties’, in MATEC Web of Conferences, 2018, vol. 204, no. August, pp. 30–31, doi: 10.1051/matecconf/201820405002.
M. Sayuti, R. Putra, and M. Yusuf, ‘The characterization of magnetic materials extracted from aceh iron sand’, Chem. Ind. Chem. Eng. Q., vol. 26, no. 2, pp. 105–111, 2020, doi: 10.2298/CICEQ190325029S.
R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Second ed. Weinheim: Wiley-VCH, 2003.
L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, and D. D. Berhanuddin, ‘Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation’, Magnetochemistry, vol. 6, no. 4, p. 68, Dec. 2020, doi: 10.3390/magnetochemistry6040068.
P. Majewski and B. Thierry, ‘Functionalized Magnetite Nanoparticles—Synthesis, Properties, and Bio-Applications’, Crit. Rev. Solid State Mater. Sci., vol. 32, no. 3–4, pp. 203–215, Dec. 2007, doi: 10.1080/10408430701776680.
A. V. Andreev, M. I. Bartashevich, T. Goto, and S. M. Zadvorkin, ‘Magnetic properties of (Y1 ? Th )2Fe14B’, J. Alloys Compd., vol. 262–263, pp. 467–470, Nov. 1997, doi: 10.1016/S0925-8388(97)00356-3.
F. J. Morin, ‘Magnetic Susceptibility of ?Fe2?O3 and ?Fe2?O3 with Added Titanium’, Phys. Rev., vol. 78, no. 6, pp. 819–820, Jun. 1950, doi: 10.1103/PhysRev.78.819.2.
R. D. Zysler, D. Fiorani, and A. M. Testa, ‘Investigation of magnetic properties of interacting Fe2O3 nanoparticles’, J. Magn. Magn. Mater., vol. 224, no. 1, pp. 5–11, Feb. 2001, doi: 10.1016/S0304-8853(00)01328-7.
S. X. Wang et al., ‘Towards a magnetic microarray for sensitive diagnostics’, J. Magn. Magn. Mater., vol. 293, no. 1, pp. 731–736, May 2005, doi: 10.1016/j.jmmm.2005.02.054.
R. Qiao et al., ‘Magnetic iron oxide nanoparticles for brain imaging and drug delivery’, Adv. Drug Deliv. Rev., vol. 197, p. 114822, Jun. 2023, doi: 10.1016/j.addr.2023.114822.
L. Babes, B. Denizot, G. Tanguy, J. J. Le Jeune, and P. Jallet, ‘Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study’, J. Colloid Interface Sci., vol. 212, no. 2, pp. 474–482, Apr. 1999, doi: 10.1006/jcis.1998.6053.
H.-T. Song et al., ‘Surface Modulation of Magnetic Nanocrystals in the Development of Highly Efficient Magnetic Resonance Probes for Intracellular Labeling’, J. Am. Chem. Soc., vol. 127, no. 28, pp. 9992–9993, Jul. 2005, doi: 10.1021/ja051833y.
R. Jurgons, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach, and C. Alexiou, ‘Drug loaded magnetic nanoparticles for cancer therapy’, J. Phys. Condens. Matter, vol. 18, no. 38, pp. S2893–S2902, Sep. 2006, doi: 10.1088/0953-8984/18/38/S24.
D. Tanyola and A. R. Zdural, ‘BSA adsorption onto magnetic polyvinylbutyral microbeads’, J. Appl. Polym. Sci., vol. 80, no. 5, pp. 707–715, May 2001, doi: 10.1002/1097-4628(20010502)80:5<707::AID-APP1147>3.0.CO;2-K.
S. Laurent et al., ‘Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (Chemical Reviews (2008) 108 (2064))’, Chem. Rev., vol. 108, no. 6, pp. 2064–2110, 2008, doi: https://doi.org/10.1021/cr068445e.
L. B. Bangs, ‘New developments in particle-based immunoassays: Introduction’, Pure Appl. Chem., vol. 68, no. 10, pp. 1873–1879, Jan. 1996, doi: 10.1351/pac199668101873.
P. D. Rye, ‘Sweet and Sticky: Carbohydrate-Coated Magnetic Beads’, Nat. Biotechnol., vol. 14, no. 2, pp. 155–157, Feb. 1996, doi: 10.1038/nbt0296-155.
R. Langer, ‘New Methods of Drug Delivery’, Science (80-. )., vol. 249, no. 4976, pp. 1527–1533, Sep. 1990, doi: 10.1126/science.2218494.
W. Wang et al., ‘Superparamagnetic iron oxide nanoparticles for full-color photonic materials with tunable properties’, Results Phys., vol. 14, no. February, p. 102366, 2019, doi: 10.1016/j.rinp.2019.102366.
L. Wang et al., ‘Magnetic characteristics of sediments from a radial sand ridge field in the South Yellow Sea, eastern China, and environmental implications during the mid- to late-Holocene’, J. Asian Earth Sci., vol. 163, pp. 224–234, Sep. 2018, doi: 10.1016/j.jseaes.2018.05.035.
DOI: https://doi.org/10.52088/ijesty.v5i3.975
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muhammad Sayuti, Muhammad Yusuf, Reza Putra, Riza Wirawan