Building a Narrative Event Dataset from Andersen’s Fairy Tales for Literary and Computational Analysis
Abstract
This paper describes building a narrative event dataset for the entire set of 153 fairy tales written by Hans Christian Andersen as?a resource for literary analysis and computational research. The corpus is?built up through semi-automatic annotation for important narrative events: character actions, period transitions, causal communications, and story themes. Each event is augmented with? metadata such as event type, event participants, event temporality (order) and event thematic relevance. This computer-readable structured data is helpful for NLP applications like event detection and temporal reasoning. Still, it supports in-depth literary?studies of plot structures, moral themes and character archetypes in Andersen's stories. Linking the digital humanities with the domain of computational linguistics, the dataset can be jointly used in inter-disciplinary research, and has the potential to reveal new aspects of classical narrative forms and how these findings?and developments can be usefully integrated in AI-supported storytelling systems.
Keywords
Full Text:
PDFReferences
Z.-H. Wang, R.-J. Tseng, H.-P. Lee, T.-F. Sheu, and Y.-T. Huang, ‘An Interactively Application of Fairy Tales for Preschool Children’. 2016. [Online]. Available: http://papers.iafor.org/wp-content/uploads/papers/acset2016/ACSET2016_33369.pdf
E. Daniati, A. P. Wibawa, and W. S. G. Irianto, ‘Event Extraction in Narrative Texts: A Zero-Shot Approach Using Bert and Bi-LSTM on Andersen’s Fairy Tales’, in 2025 17th International Conference on Knowledge and Smart Technology (KST), IEEE, Feb. 2025, pp. 208–213. doi: 10.1109/KST65016.2025.11003342.
B. Franz, ‘Narrative time and International Relations’, J. Int. Relations Dev., vol. 25, no. 3, pp. 761–783, 2022, doi: 10.1057/s41268-022-00261-3.
T. L. M. Suryanto, A. P. Wibawa, H. Hariyono, and A. Nafalski, ‘Comparative Performance of Transformer Models for Cultural Heritage in NLP Tasks’, Adv. Sustain. Sci. Eng. Technol., vol. 7, no. 1, p. 0250115, Jan. 2025, doi: 10.26877/asset.v7i1.1211.
Supriyono, A. P. Wibawa, Suyono, and F. Kurniawan, ‘Advancements in natural language processing: Implications, challenges, and future directions’, Telemat. Informatics Reports, vol. 16, p. 100173, Dec. 2024, doi: 10.1016/j.teler.2024.100173.
Q. Zaman, S. Safwandi, and F. Fajriana, ‘Supporting Application Fast Learning of Kitab Kuning for Santri’ Ula Using Natural Language Processing Methods’, Int. J. Eng. Sci. Inf. Technol., vol. 5, no. 1, pp. 278–289, Jan. 2025, doi: 10.52088/ijesty.v5i1.713.
H.-Y. Yu and M.-H. Kim, ‘Automatic Event Extraction method for Analysing Text Narrative Structure’, in 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), IEEE, Jan. 2021, pp. 1–4. doi: 10.1109/IMCOM51814.2021.9377386.
A. R. Hofer, ‘Sources: The Greenwood Encyclopedia of Folktales and Fairy Tales’, Ref. User Serv. Q., vol. 48, no. 1, pp. 94–95, Sep. 2008, doi: 10.5860/rusq.48n1.94.
J. E. Bradford, ‘The challenge of fairy tales : eliciting a critical gendered response in young children’. 2020.
E. Daniati, A. P. Wibawa, W. S. G. Irianto, A. Ghosh, and L. Hernandez, ‘Analysing event relationships in Andersen’s Fairy Tales with BERT and Graph Convolutional Network (GCN)’, Sci. Inf. Technol. Lett., vol. 5, no. 1, pp. 40–60, May 2024, doi: 10.31763/sitech.v5i1.1810.
H. C. Andersen, Andersen’s Fairy Tales, 1st ed., no. January 1999. Guttenberg, 1999. [Online]. Available: https://www.gutenberg.org/ebooks/1597
‘Event Causality Extraction with Event Argument Correlations’, 2023. doi: 10.48550/arXiv.2301.11621.
F. A. Ahda, A. P. Wibawa, D. Dwi Prasetya, and D. Arbian Sulistyo, ‘Comparison of Adam Optimization and RMS prop in Minangkabau-Indonesian Bidirectional Translation with Neural Machine Translation’, JOIV Int. J. Informatics Vis., vol. 8, no. 1, p. 231, Mar. 2024, doi: 10.62527/joiv.8.1.1818.
Chidera Victoria Ibeh, Onyeka Franca Asuzu, Temidayo Olorunsogo, Oluwafunmi Adijat Elufioye, Ndubuisi Leonard Nduubuisi, and Andrew Ifesinachi Daraojimba, ‘Business analytics and decision science: A review of techniques in strategic business decision making’, World J. Adv. Res. Rev., vol. 21, no. 2, pp. 1761–1769, Feb. 2024, doi: 10.30574/wjarr.2024.21.2.0247.
‘Boosting Event Extraction with Denoised Structure-to-Text Augmentation’, arXiv.org, vol. abs/2305.0, 2023, doi: 10.48550/arXiv.2305.09598.
C. Zhou, ‘Sentiment analysis of Twitter user text based on the BERT model’, Appl. Comput. Eng., vol. 52, no. 1, pp. 102–108, Mar. 2024, doi: 10.54254/2755-2721/52/20241380.
HogenboomFrederik, FrasincarFlavius, KaymakUzay, de JongFranciska, and CaronEmiel, ‘A Survey of event extraction methods from text for decision support systems’.
A. Krzywicki, W. Wobcke, M. Bain, S. Schmeidl, and B. Heap, ‘A Knowledge Acquisition Method for Event Extraction and Coding Based on Deep Patterns’, in Knowledge Management and Acquisition for Intelligent Systems, Springer International Publishing, 2018, pp. 16–31. doi: 10.1007/978-3-319-97289-3_2.
R. Li, P. Haslum, and L. Cui, ‘Towards Learning Action Models from Narrative Text Through Extraction and Ordering of Structured Events’, 2024, pp. 16–27. doi: 10.1007/978-981-99-8391-9_2.
M. A. DeBuse and S. Warnick, ‘Plot extraction and the visualisation of narrative flow’, Nat. Lang. Eng., vol. 30, no. 3, pp. 480–524, May 2024, doi: 10.1017/S1351324923000232.
B. D. Samudera, N. Nurdin, and H. A. K. Aidilof, ‘Sentiment Analysis of User Reviews on BSI Mobile and Action Mobile Applications on the Google Play Store Using Multinomial Naive Bayes Algorithm’, Int. J. Eng. Sci. Inf. Technol., vol. 4, no. 4, pp. 101–112, Oct. 2024, doi: 10.52088/ijesty.v4i4.581.
M. Castro, A. Jorge, and R. Campos, ‘TweetStream2Story: Narrative Extraction from Tweets in Real Time’, 2023, pp. 217–223. doi: 10.1007/978-3-031-28241-6_17.
P. Purnawansyah et al., ‘Congestion Predictive Modelling on Network Dataset Using Ensemble Deep Learning’, J. Appl. Data Sci., vol. 5, no. 4, pp. 1597–1613, Dec. 2024, doi: 10.47738/jads.v5i4.333.
J. M. Ferreira and C. Vectore, ‘Fairy tales and mediational practice: possibilities to build cognitive repertoire in childhood education’, vol. 20, no. 1, pp. 155–176, 2014, doi: 10.5752/P.1678-9523.2014V20N1P155.
A. de Giorgio, A. Maffei, M. Onori, and L. Wang, ‘Towards online reinforced learning of assembly sequence planning with interactive guidance systems for industry 4.0 adaptive manufacturing’, J. Manuf. Syst., vol. 60, pp. 22–34, Jul. 2021, doi: 10.1016/j.jmsy.2021.05.001.
R. F. Cekinel and P. Karagoz, ‘Event prediction from news text using subgraph embedding and graph sequence mining’, World Wide Web, vol. 25, no. 6, pp. 2403–2428, 2022, doi: 10.1007/s11280-021-01002-1.
F. iscus and A. S. Girsang, ‘Sentiment Analysis of COVID-19 Public Activity Restriction (PPKM) Impact using BERT Method’, Int. J. Eng. Trends Technol., vol. 70, no. 12, pp. 281–288, Dec. 2022, doi: 10.14445/22315381/IJETT-V70I12P226.
A. K. Kolya, A. Ekbal, and S. Bandyopadhyay, ‘A Hybrid Approach for Event Extraction’, Polibits, vol. 46, pp. 55–59, Dec. 2012, doi: 10.17562/PB-46-6.
‘Whats New? Identifying the Unfolding of New Events in Narratives’, arXiv.org, vol. abs/2302.0, 2023, doi: 10.48550/arXiv.2302.07748.
Y. Chen, Z. Ding, Q. Zheng, Y. Qin, R. Huang, and N. Shah, ‘A History and Theory of Textual Event Detection and Recognition’, IEEE Access, vol. 8, pp. 201371–201392, 2020, doi: 10.1109/ACCESS.2020.3034907.
Y. Wu, H. Sun, and C. Yan, ‘An event timeline extraction method based on news corpus’, in 2017 {IEEE} 2nd {International} {Conference} on {Big} {Data} {Analysis} ({ICBDA})(, 2017. doi: 10.1109/icbda.2017.8078725.
‘The Fairy Tales and Anne Sexton’s Transformation with Reference to Female Protagonists in Cinderella’, ????, vol. 2, no. 50, pp. 695–715, 2023, doi: 10.31185/lark.vol2.iss50.3144.
DOI: https://doi.org/10.52088/ijesty.v5i3.910
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Erna Daniati, Aji Prasetya Wibawa, Wahyu Sakti Gunawan Irianto