Analysis of Boarding House Feasibility and Satisfaction Using Data Mining with the C4.5 Algorithm Based on Service Quality and Facilities
Abstract
This research develops a boarding house eligibility classification system using the C4.5 algorithm based on service quality and available facilities. The system evaluates boarding house eligibility by considering various factors such as management services, cleanliness, security, room facilities, public facilities, internet access, comfort, and price. Each of these factors is given a specific weight based on its importance to the tenants, and they are used to classify boarding houses as luxury, standard, and economical. The classification results show that 43% of luxury boarding houses were deemed eligible, while 57% were not. In the standard boarding house category, 21% were classified as eligible, and 79% as ineligible, while in the economical category, 23% were eligible and 77% were ineligible. Using the Confusion Matrix and Classification Report, model evaluation revealed precision ranging from 0.4 to 1.0, recall from 0.67 to 1.0, and F1-scores from 0.5 to 0.91, demonstrating a reasonably high overall accuracy. Additionally, feature importance analysis revealed that price, water and electricity availability, and room facilities are the most influential factors in determining boarding house eligibility. The system's performance was tested against a dataset of real-world boarding houses, and the results suggest that it can accurately classify boarding houses based on key factors that affect tenant satisfaction. The system has the potential to serve as a valuable decision-making tool for boarding house owners, helping them improve service quality and for prospective tenants, enabling them to make more informed housing choices based on their preferences and needs.
Keywords
References
J. A. Terapan and S. K. Bisnis, “ANALYSIS OF INVESTMENT FEASIBILITY FOR BUSINESS,” vol. 2, pp. 171–185, 2024.
M. S. Ummah, “Analisis Struktur Kovarians pada Indikator Kesehatan yang Berfokus pada Persepsi Kesehatan Subjektif pada Lansia yang Tinggal di Rumah” Sustainability (Switzerland), vol. 11, no. 1, pp. 1–14, 2019.
L. Susilowati, “Kualitas Pelayanan, Harga Dan Fasilitas Rumah Kos Di Desa Plosokandang Dalam Memberikan Kepuasan Kepada Penghuninya,” An-Nisbah: Jurnal Ekonomi Syariah, vol. 7, no. 2, pp. 561–595, 2020, doi: 10.21274/an.v7i02.3605.
Reza Fauzy, Riki Winanjaya, and Susiani, “Analisis Tingkat Kepuasan Pelanggan dengan Menerapkan Algoritma C4.5,” Bulletin of Computer Science Research, vol. 2, no. 2, pp. 41–46, 2022, doi: 10.47065/bulletincsr.v2i2.162.
N. L. Mauliddiyah, “Analisis Struktur Kovarians pada Indikator Kesehatan yang Berfokus pada Persepsi Kesehatan Subjektif pada Lansia yang Tinggal di Rumah” p. 6, 2021.
C. Tristianto and D. A. Zein, “Prediksi Pemilihan Fakultas Di Universitas Pada Sekolah Menengah Atas Negeri XXX Tangerang Selatan Dengan Menggunakan Algoritma C4.5,” Jurnal Penelitian dan Pengkajian Sains dan Teknologi, vol. 32, 2022, doi: 10.37277/stch.v32i4.
R. Putri Fadhillah, R. Rahma, A. Sepharni, R. Mufidah, B. Nurina Sari, and A. Pangestu, “KLASIFIKASI PENYAKIT DIABETES MELLITUS BERDASARKAN FAKTOR-FAKTOR PENYEBAB DIABETES MENGGUNAKAN ALGORITMA C4.5,” 2022. [Online]. Available: www.kaggle.com
A. Prasetio, M. H. Hasibuan, and P. Sitompul, “Simulasi Penerapan Metode Decision Tree (C4.5) Pada Penentuan Status Gizi Balita,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 4, no. 3, 2021.
P. V.M, I. Gunawan, B. E. Damanik, I. Parlin, and A. W. Saputra, “Penerapan Data Mining Menggunakan Algoritma C4.5,” Sostech, vol. 1, no. 5, pp. 2774–5147, 2021.
R. Aminah, Replita, I. Dianto, and N. Hasibuan, “Dampak Keberadaan Rumah Kost Mahasiswa Terhadap Kehidupan Ekonomi Masyarakat,” Jurnal at-taghyir, vol. 6, pp. 239–252, 2024.
A. Rahmatillah, T. Saputra, and W. B. Hartiningsih, “Sistem Informasi Rumah Kost Berbasis Web Studi Kasus pada Paviliun Sejahtera,” Explore:Jurnal Sistem informasi dan telematika, vol. 11, no. 2, p. 102, 2020, doi: 10.36448/jsit.v11i2.1495.
Ar Razi, “Klasifikasi Penerima Beasiswa Aceh Carong (Aceh Pintar) Di Universitas Malikussaleh Menggunakan Algoritma Knn (K-Nearest Neighbors),” Jurnal Tika, vol. 7, no. 1, pp. 79–84, 2022.
C. Zai, “IMPLEMENTASI DATA MINING SEBAGAI PENGOLAHAN DATA,” 2022.
Asrianda, A. Razi, and Zulfadli, “Tingkat Kepuasan Peserta Pelatihan Pengabdian Dosen Universitas Malikussaleh Menggunakan Fuzzy Ahp,” INFOTECH journal, vol. 9, no. 1, pp. 20–24, 2023, doi: 10.31949/infotech.v9i1.4339.
Fauziah, Dedy Hartama, and Irfan Sudahri Damanik, “Analisa Kepuasan Pelanggan Menggunakan Klasifikasi Data Mining,” Jurnal Penerapan Kecerdasan Buatan, 2020.
D. A. C, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes,” vol. 2, no. 1, pp. 39–46.
M. Adriansa, L. Yulianti, L. Elfianty, U. Dehasen Bengkulu, and J. Meranti Raya, “Analisis Kepuasan Pelanggan Menggunakan Algoritma C4.5,” 2022.
P. B. N. Setio, D. R. S. Saputro, and B. Winarno, “Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prosiding Seminar Nasional Matematika, vol. 3, pp. 64–71, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
M. R. S. Alfarizi, M. Z. Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning,” Karya Ilmiah Mahasiswa Bertauhid (KARIMAH TAUHID), vol. 2, no. 1, pp. 1–6, 2023.
M. Abdul muthalib, I. Irfan, K. Kartika, and S. M. Selamat Meliala, “Pengiraan Pose Model Manusia Pada Repetisi Kebugaran Ai Pemograman Python Berbasis Komputerisasi,” INFOTECH journal, vol. 9, no. 1, pp. 11–19, 2023, doi: 10.31949/infotech.v9i1.4233.
DOI: https://doi.org/10.52088/ijesty.v5i3.896
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Aktina Manik, Dahlan Abdullah, Ar Razi




























