Tensile and Flexural Properties of Epoxy Nanocomposites Reinforced with Cellulose Nanocrystals

Taufik Azhary, Afril Efan Pajri

Abstract


Composite materials are extensively utilized across various fields such as engineering, aviation, automotive, construction, and healthcare. This widespread application highlights their superior properties, often absent in the individual constituent materials. Additionally, composites offer the advantage of being easily fabricated to meet specific requirements, and incorporating natural fibers as reinforcement has gained significant interest due to their environmental friendliness and abundance. Among these, nanocellulose is a promising green material due to its unique characteristics. Specifically, cellulose nanocrystals (CNC), nanoscale derivatives of nanocellulose, have attracted considerable attention as reinforcement agents in composite fabrication. This interest stems from CNC's notable advantages, including excellent mechanical properties, a high crystallinity index, plentiful availability, low weight, and eco-friendly nature. This study was undertaken to investigate the impact of varying concentrations of cellulose nanocrystal (CNC) (0, 0.5, 0.75, 1 wt%) on the mechanical properties, specifically the tensile and flexural properties, of epoxy resin/cellulose nanocrystal (E/CNC) nanocomposites. The materials employed in this research include epoxy resin, hardener, and cellulose nanocrystals. The fabrication of the E/CNC nanocomposites was carried out through a straightforward mixing method, wherein the constituent materials were blended following the defined experimental parameters, followed by the molding process. The findings of this study indicate that the incorporation of cellulose nanocrystals (CNC) significantly enhances the mechanical properties of E/CNC nanocomposites. The E/0.75CNC nanocomposite showed optimal tensile strength (39.91 MPa; +4.95%), while E/1CNC exhibited superior flexural strength (65.78 MPa; +5.08%) compared to the unmodified epoxy baseline.


Keywords


Cellulose Nanocrystal, Epoxy, Nanocomposite, Mechanical Properties, Tensile Strength

Full Text:

PDF

References


X. Huang, L. Yang, L. Meng, and J. Lu, “Mechanical and thermal properties of cellulose nanocrystals from jute fibers reinforced epoxy composites,” Journal of the Textile Institute, vol. 113, no. 9, pp. 1983–1987, 2022, doi: 10.1080/00405000.2021.1958543.

E. Ojogbo, C. Tzoganakis, and T. H. Mekonnen, “Silane-modified cellulose nanocrystals (CNCs) based natural rubber composites,” Compos Part A Appl Sci Manuf, vol. 190, Mar. 2025, doi: 10.1016/j.compositesa.2024.108632.

M. M. Y. Zaghloul, Y. S. Mohamed, and H. El-Gamal, “Fatigue and tensile behaviors of fiber-reinforced thermosetting composites embedded with nanoparticles,” J Compos Mater, vol. 53, no. 6, pp. 709–718, Mar. 2019, doi: 10.1177/0021998318790093.

P. Zhu et al., “Influence of concentration, dispersibility, compatibility and orientation of rod-like cellulose nanocrystals in epoxy resin on the mechanical performance of their composite films,” Prog Org Coat, vol. 194, Sep. 2024, doi: 10.1016/j.porgcoat.2024.108588.

M. Carrola, E. Motta de Castro, A. Tabei, and A. Asadi, “Cellulose nanocrystal-assisted processing of nanocomposite filaments for fused filament fabrication,” Polymer (Guildf), vol. 278, Jun. 2023, doi: 10.1016/j.polymer.2023.125980.

S. Geng, D. Wloch, N. Herrera, and K. Oksman, “Large-scale manufacturing of ultra-strong, strain-responsive poly(lactic acid)-based nanocomposites reinforced with cellulose nanocrystals,” Compos Sci Technol, vol. 194, Jul. 2020, doi: 10.1016/j.compscitech.2020.108144.

A. Kaboorani, N. Gray, Y. Hamzeh, A. Abdulkhani, and Y. Shirmohammadli, “Tailoring the low-density polyethylene - thermoplastic starch composites using cellulose nanocrystals and compatibilizer,” Polym Test, vol. 93, Jan. 2021, doi: 10.1016/j.polymertesting.2020.107007.

Y. Xu et al., “Mussel-inspired polydopamine-modified cellulose nanocrystal fillers for the preparation of reinforced and UV-shielding poly (lactic acid) films,” Journal of Materials Research and Technology, vol. 19, pp. 4350–4359, Jul. 2022, doi: 10.1016/j.jmrt.2022.06.152.

R. Laghaei et al., “Reinforcement contribution of cellulose nanocrystals (CNCs) to tensile properties and fracture behavior of triaxial E-glass fabric/epoxy composites,” Compos Part A Appl Sci Manuf, vol. 164, Jan. 2023, doi: 10.1016/j.compositesa.2022.107258.

J. E. Lee, Y. E. Kim, G. H. Lee, M. J. Kim, Y. Eom, and H. G. Chae, “The effect of cellulose nanocrystals (CNCs) on the microstructure of amorphous polyetherimide (PEI)-based nanocomposite fibers and its correlation with the mechanical properties,” Compos Sci Technol, vol. 200, Nov. 2020, doi: 10.1016/j.compscitech.2020.108452.

S. Kumar, B. G. Falzon, J. Kun, E. Wilson, G. Graninger, and S. C. Hawkins, “High performance multiscale glass fibre epoxy composites integrated with cellulose nanocrystals for advanced structural applications,” Compos Part A Appl Sci Manuf, vol. 131, Apr. 2020, doi: 10.1016/j.compositesa.2020.105801.

R. Putra, T. Hafli, N. Islami, M. P. Nugraha, and M. K. Irsyad, “Analysis of the Mechanical Properties of Teak Sawdust-Reinforced Composite Boards Affected by the Alkalization Process”, doi: 10.52088/ijesty.v1i4.303.

A. Nayan, M. Yusuf, and D. Siska, “Tensile Strength Comparison of Polymer Composite Materials Reinforced by Three Types of Bamboo Fiber Treated With 5% aq. NaOH Solution”, doi: 10.52088/ijesty.v1i4.322.

T. Azhary, Kusmono, M. W. Wildan, and Herianto, “Mechanical, morphological, and thermal characteristics of epoxy/glass fiber/cellulose nanofiber hybrid composites,” Polym Test, vol. 110, Jun. 2022, doi: 10.1016/j.polymertesting.2022.107560.

X. Li, W. Xia, L. Shen, W. Tan, and X. Luo, “Preparation of cellulose nanoparticles/epoxy resin composites using the in-situ reaction method for strengthening and toughening epoxy resin film simultaneously,” Mater Lett, vol. 349, Oct. 2023, doi: 10.1016/j.matlet.2023.134790.

N. Li et al., “Biobased solvent-free fluids based on spherical cellulose nanocrystals for epoxy nanocomposite adhesive reinforcement,” Compos Sci Technol, vol. 261, Mar. 2025, doi: 10.1016/j.compscitech.2024.111007.

N. Saba, F. Mohammad, M. Pervaiz, M. Jawaid, O. Y. Alothman, and M. Sain, “Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites,” Int J Biol Macromol, vol. 97, pp. 190–200, Apr. 2017, doi: 10.1016/j.ijbiomac.2017.01.029.

N. Izzati Mustapha, M. Mohamed, M. Bashree Abu Bakar, and S. Ahmad Sobri, “Mechanical and physical properties of unsaturated polyester reinforced kenaf core fiber with hybrid cellulose nanocrystal (CNC) and graphene Nanoplatelet (GNP) nanofillers,” in Materials Today: Proceedings, Elsevier Ltd, Jan. 2023, pp. 163–168. doi: 10.1016/j.matpr.2022.11.152.

J. Li and Z. Qiu, “Fully biodegradable Poly (butylene succinate-co-1,2-decylene succinate)/Cellulose nanocrystals composites with significantly enhanced crystallization and mechanical property*,” Polymer (Guildf), vol. 252, Jun. 2022, doi: 10.1016/j.polymer.2022.124946.

T. N. Mohammed Irfan et al., “Waste paper as a viable sustainable source for cellulosic extraction by chlorine free bleaching and acid hydrolysis method for the production of PVA-starch/cellulose based biocomposites,” Mater Today Proc, 2023, doi: 10.1016/j.matpr.2023.03.805.

S. Das, B. Ghosh, and K. Sarkar, “Nanocellulose as sustainable biomaterials for drug delivery,” Sensors International, vol. 3, Jan. 2022, doi: 10.1016/j.sintl.2021.100135.

Z. Li et al., “Advances and perspectives of composite nanoarchitectonics of nanocellulose/metal-organic frameworks for effective removal of volatile organic compounds,” Dec. 01, 2024, Elsevier B.V. doi: 10.1016/j.ccr.2024.216124.

H. Faraj et al., “Gas barrier properties of polylactide/cellulose nanocrystals nanocomposites,” Polym Test, vol. 113, Sep. 2022, doi: 10.1016/j.polymertesting.2022.107683.

R. Syafiq, S. M. Sapuan, and M. R. M. Zuhri, “Antimicrobial activity, physical, mechanical and barrier properties of sugar palm based nanocellulose/starch biocomposite films incorporated with cinnamon essential oil,” Journal of Materials Research and Technology, vol. 11, pp. 144–157, Mar. 2021, doi: 10.1016/j.jmrt.2020.12.091.

D. Wang et al., “Composite membranes of polyacrylonitrile cross-linked with cellulose nanocrystals for emulsion separation and regeneration,” Compos Part A Appl Sci Manuf, vol. 164, Jan. 2023, doi: 10.1016/j.compositesa.2022.107300.

E. DiLoreto, E. Haque, A. Berman, R. J. Moon, and K. Kalaitzidou, “Freeze dried cellulose nanocrystal reinforced unsaturated polyester composites: challenges and potential,” Cellulose, vol. 26, no. 7, pp. 4391–4403, May 2019, doi: 10.1007/s10570-019-02377-1.

G. da S. Maradini et al., “Characterization of polyester nanocomposites reinforced with conifer fiber cellulose nanocrystals,” Polymers (Basel), vol. 12, no. 12, pp. 1–19, Dec. 2020, doi: 10.3390/polym12122838.

S. Cai, Y. Li, H. Y. Liu, and Y. W. Mai, “Damping properties of carbon fiber reinforced composites hybridized with polysulfone (PSF)/cellulose nanocrystal (CNC) interleaves,” Compos Sci Technol, vol. 213, Sep. 2021, doi: 10.1016/j.compscitech.2021.108904.

F. Lessan, M. Karimi, J. L. Bañuelos, and R. Foudazi, “Phase separation and performance of polyethersulfone/cellulose nanocrystals membranes,” Polymer (Guildf), vol. 186, Jan. 2020, doi: 10.1016/j.polymer.2019.121969.




DOI: https://doi.org/10.52088/ijesty.v5i3.892

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Taufik Azhary, Afril Efan Pajri

International Journal of Engineering, Science, and Information Technology (IJESTY) eISSN 2775-2674