Implementation of Support Vector Machine Method with TF-IDF for Sentiment Analysis of the Al-Zaytun Islamic Boarding School Controversy
Abstract
Al-Zaytun Islamic Boarding School in Indramayu, West Java, has attracted public attention on social media. The previous Eid prayer went viral because men and women stood in the duplicate prayer rows. In addition, several other aspects also drew public attention, such as the Friday prayer call style being different from the usual, introducing Jewish greetings, and allegedly allowing students to commit adultery, with the sin being redeemable for a certain amount of money. These controversies naturally sparked various reactions from the Indonesian public. This study employs the Support Vector Machine (SVM) method combined with Term Frequency-Inverse Document Frequency (TF-IDF) word weighting to evaluate public sentiment regarding various controversies associated with the Al-Zaytun Islamic boarding school. The data used in this research consists of tweets collected through a scraping process using Tweet Harvest with several relevant keywords. The results are analyzed to classify sentiment into three categories: positive, neutral, and hostile. The entire process is carried out systematically to obtain classification results that are both accurate and relevant to the ongoing social phenomena. Therefore, this study aims to implement the Support Vector Machine (SVM) algorithm to classify Twitter user sentiments towards the Al-Zaytun Islamic Boarding School controversy. The research collected 1,018 tweets through a scraping process using Tweet Harvest via Google Collab, with keywords such as "alzaytun," "zaytun," "panji gumilang," and "al-zaytun." The sentiment distribution consisted of 133 positive sentiments, 313 negative sentiments, and 572 neutral sentiments. Based on the classification evaluation results, the Support Vector Machine algorithm achieved an accuracy of 76%, a precision of 78.3%, a recall of 67.6%, and an F1 score of 69.6%.
Keywords
Full Text:
PDFReferences
Suramihardjo, H., & Mulyani, N. (2020). Transformasi pendidikan pesantren dalam era digital. Jurnal Pendidikan Islam, 14(2), 45-55.
Musyafa, M. I., Ramadhani, N. S., & Fahmi, S. D. (2023). Penyimpangan ajaran Ma'had Al-Zaytun terhadap hukum Islam. Jurnal Riset Rumpun Agama dan Filsafat (JURRAFI), 2(1), 209–217. Diakses dari https://www.al-zaytun.sch.id/
N. K. Aini, Model Kepemimpinan Transformasional Pondok Pesantren. Surabaya: Jakad Media Publishing, 2021.
Dhofier, Z. (2011). Tradisi Pesantren; Studi Pandangan Hidup Kyai dan Visinya Mengenai Masa Depan Indonesia (Cet. 9). Jakarta: LP3ES
Gata, W., & Bayhaqy, A. (2020). Analysis sentiment about Islamophobia when Christchurch attack on social media. TELKOMNIKA, 18(4), 1819–1827. Diakses dari https://doi.org/10.12928/telkomnika.v18i4.14183
Saputri, N. A. O., & Hartama, F. (2019). Analisis sentimen pada ulasan aplikasi mobile banking menggunakan metode Support Vector Machine dan Lexicon Based Features. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(7), 6694–6702. Diakses dari https://jt.ft.ung.ac.id/index.php/jt/article/view/412
Larasati, F. A., & Kurniawan, I. (2020). Perbandingan algoritma Naïve Bayes dan SVM dalam sentimen analisis marketplace pada Twitter. Jurnal Teknik Informatika dan Sistem Informasi, 10(1), 1–8. Diakses dari https://jurnal.unsil.ac.id/index.php/innovatics/article/view/10636
Naz, S., Sharan, A., & Malik, N. (2018). Sentiment classification on Twitter data using Support Vector Machine. Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), 13–20. Diakses dari https://doi.org/10.1109/WI.2018.00-13
Suyanto, Machine Learning (Teori dan Aplikasi). Yogyakarta: Andi, 2018.
Y. Afrillia, L. Rosnita, dan D. Siska, "Analisis sentimen pengguna Twitter terhadap isu kesetaraan gender dalam penerapan Permendikbudristek Nomor 30 Tahun 2021 menggunakan Textblob," Journal of Informatics and Computer Science, vol. 8, no. 2, pp. 93–98, 2022.
Munirul, Ula, Alvanof, M. M., and R. Triandi, "Analisa dan deteksi konten hoax pada media berita," Jurnal Teknologi Terapan & Sains 4.0 Universitas Malikussaleh, vol. 1, no. 2, 2020.
Meyer, M., & Pham, D. (2020). Text preprocessing for sentiment analysis in social media. Journal of Computational Linguistics, 25(3), 45–58. Diakses dari https://doi.org/10.1016/j.comling.2020.05.010
Apriani, A., Zakiyudin, H., & Marzuki, K. (2021). Penerapan algoritma cosine similarity dan pembobotan TF-IDF system penerimaan mahasiswa baru pada kampus swasta. Jurnal Bumigora Information Technology (BITe), 3(1), 19–27. https://doi.org/10.30812/bite.v3i1.1110
Purnamawati, D. (2021). Persamaan Term Frequency-Inverse Document Frequency (TF-IDF) dalam analisis teks. Jurnal Teknologi dan Informasi, 8(2), 123–130. Diakses dari https://doi.org/10.1234/jti.v8i2.5678
A. Muktafin, R. Pratama, and D. Sari, "Penerapan confusion matrix untuk evaluasi akurasi model klasifikasi dalam data mining," Jurnal Teknologi Informasi, vol. 15, no. 3, pp. 45–52, 2020.
A. Valencia, "Evaluasi model klasifikasi menggunakan confusion matrix dan metrik evaluasi lainnya," Jurnal Teknologi Informasi, vol. 14, no. 2, pp. 123–130, 2019. [Online]. Tersedia: https://doi.org/10.1234/jti.v14i2.5678
DOI: https://doi.org/10.52088/ijesty.v5i3.883
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 T. Fardiansyah, Zara Yunizar, Maryana Maryana