Comparison of the Results of the Weighted Moving Average Method and the Least Absolute Shrinkage and Selection Operator Method for Predicting Total Palm Oil Production at PT. Mora Niaga Jaya
Abstract
This study compares two prediction methods, Weighted Moving Average (WMA) and Least Absolute Shrinkage and Selection Operator (LASSO), in forecasting the total palm oil production at PT. Mora Niaga Jaya. Accurate forecasting is essential in the palm oil industry to support decision-making, optimize production planning, and manage supply chains efficiently. The WMA method produced more realistic prediction results, with a Mean Absolute Error (MAE) of 114,854 tons and a Mean Absolute Percentage Error (MAPE) of 220.45%, despite still having a considerable margin of error. These values suggest that while WMA is not perfectly accurate, it performs moderately well, given the complexity and variability inherent in agricultural production data. On the other hand, the LASSO method yielded significantly worse results, with an extremely high and unrealistic MAE and a MAPE of 291,456.000%, indicating that this approach is unsuitable for palm oil production forecasting in this specific case. The underperformance of the LASSO method may be due to the nature of the data used, which may not meet the assumptions required for LASSO to function optimally, such as linear relationships and minimal noise. This highlights the importance of aligning forecasting methods with the dataset's characteristics. Based on the comparison, it can be concluded that the WMA method is more appropriate for predicting palm oil production than LASSO. However, further steps such as parameter optimization, data normalization, and outlier removal should be undertaken to achieve better predictive accuracy. This research provides valuable insights into the importance of selecting the correct predictive method and ensuring data quality in forecasting. Ultimately, careful model selection and data preprocessing support effective operational and strategic decisions in the palm oil industry.
Keywords
References
S. J. Arditna and R. Kurniawan, “Prediksi Harga Tandan Buah Segar dengan Algoritma K-Nearest Neighbor,” J. Sist. Komput. dan Inform., vol. 5, no. 1, pp. 92–101, 2023, doi: 10.30865/json.v5i1.6818.
V. Wineka Nirmala, D. Harjadi, and R. Awaluddin, “Sales Forecasting by Using Exponential Smoothing Method and Trend Method to Optimize Product Sales in PT. Zamrud Bumi Indonesia During the Covid-19 Pandemic,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 4, 2021, doi: 10.52088/ijesty.v1i4.169.
S. Kumari and A. Harikrishnan, “Importance of Financial literacy For Sustainable Future Environment: A Research Among People In Rural Areas With Special Reference To Mandi District,Himachal Pradesh,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 1, 2021, doi: 10.52088/ijesty.v1i1.36.
C. A. Rahayu, “Prediksi Penderita Diabetes Menggunakan Metode Naive Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, 2023, doi: 10.23960/jitet.v11i3.3055.
R. Akbar, R. Santoso, and B. Warsito, “Prediksi Tingkat Temperatur Kota Semarang Menggunakan Metode Long Short-Term Memory (Lstm),” J. Gaussian, vol. 11, no. 4, pp. 572–579, 2023, doi: 10.14710/j.gauss.11.4.572-579.
A. E. Syaputra and Y. S. Eirlangga, “Prediksi Tingkat Kunjungan Pasien dengan Menggunakan Metode Monte Carlo,” J. Inf. dan Teknol., vol. 4, no. 2, pp. 1–5, 2022, doi: 10.37034/jidt.v4i2.202.
D. Abdullah, M. Farhan Aulia Barus, and M. Riansyah, “Forecasting Palawija Harvest Results In North Aceh Using Multiple Linear Regression Method,” Int. J. Artif. Intelegence Res., vol. 6, no. 1, 2022.
S. Nurhayati and A. Syafiq, “Sistem Prediksi Jumlah Produksi Baju Menggunakan Weighted Moving Average,” J. Manaj. Inform., vol. 12, no. 1, pp. 14–24, 2022, doi: 10.34010/jamika.v12i1.6680.
H. P. Stroke, “ANALISIS REGRESI LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR ( LASSO ) TERHADAP WAKTU TAHAN,” vol. 01, no. 1, pp. 21–30, 2024.
Y. J. Pradana, A. H. Mujianto, and T. Kistofer, “Implementasi Metode Weighted Moving Average Untuk Prediksi Pendapatan Di Ika Laundry Berbasi Web 53 IMPLEMENTASI METODE WEIGHTED MOVING AVERAGE UNTUK PREDIKSI PENDAPATAN DI IKA LAUNDRY BERBASI WEB,” pp. 53–62, 2021.
N. D. Ovalingga, N. Amalita, Y. Kurniawati, and Z. Martha, “Regularized Ordinal Regression with LASSO : Identifying Factors in Students ’ Public Speaking Anxiety at Universitas Negeri Padang,” vol. 2, no. 1999, pp. 475–482, 2024.
A. N. Chansa et al., “Upaya Pemanfaatan Limbah Kelapa Sawit,” J. Sains Student Res., vol. 2, no. 2, pp. 148–153, 2024.
T. Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, Tommy Hastomo, Setiana Sri Wahyuni Sitepu, “??No Title No Title No Title,” J. GEEJ, vol. 7, no. 2, pp. 317–323, 2020.
S. Pujiono, R. Astuti, and F. Muhamad Basysyar, “Implementasi Data Mining Untuk Menentukan Pola Penjualan Produk Menggunakan Algoritma K-Means Clustering,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 615–620, 2024, doi: 10.36040/jati.v8i1.8360.
Ar Razi, “Klasifikasi Penerima Beasiswa Aceh Carong (Aceh Pintar) Di Universitas Malikussaleh Menggunakan Algoritma Knn (K-Nearest Neighbors),” J. Tika, vol. 7, no. 1, pp. 79–84, 2022.
F. M. Almufqi and A. Voutama, “Perbandingan Metode Data Mining Untuk Memprediksi Prestasi Akademik Siswa,” J. Tek., vol. 15, no. 1, pp. 61–66, 2023, doi: 10.30736/jt.v15i1.929.
V. A. Lestari, A. Y. Ananta, and P. Basudewa, “Sistem Informasi Prediksi Persediaan Obat Di Apotek Naylun Farma Menggunakan Holt-Winters,” J. Inform. Polinema, vol. 9, no. 2, pp. 229–236, 2023, doi: 10.33795/jip.v9i2.1289.
Fungki Wahyu and Billy Hendrik, “Perbandingan Algoritma Time Series Dan Fuzzy Inference System Dalam Analisis Data Deret Waktu,” J. Penelit. Teknol. Inf. dan Sains, vol. 1, no. 3, pp. 16–24, 2023, doi: 10.54066/jptis.v1i3.711.
E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, 2022, doi: 10.30812/matrik.v21i3.1726.
A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi,” Saintekbu, vol. 11, no. 1, pp. 78–83, 2019, doi: 10.32764/saintekbu.v11i1.298.
DOI: https://doi.org/10.52088/ijesty.v5i2.862
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sakha Ardiansyah, Rozzi Kesuma Dinata, Ar-Razi



























