Application of Ant Colony Algorithm to Determine the Shortest Route for Nature and Culinary Tourism in North Aceh
Abstract
This Research aims to design and implement a shortest route determination system for natural and culinary tourism locations in North Aceh using the Ant Colony Optimization (AntCO) algorithm. The developed system is designed to help tourists plan their trips efficiently by considering the distance and travel time between tourist destinations. The system implementation using the AntCO algorithm successfully displayed optimal routes for 28 tourist destinations in North Aceh. The system successfully implemented filtering features based on tourism categories and route visualization on an interactive map using different markers (green for natural tourism and red for culinary tourism). The research results show that the system successfully optimized tourist travel routes and provided comprehensive information, including automatic location detection, a list of tourist destinations, travel route details, and optimal visit sequences based on selected tourism categories. This system proved effective in helping tourists plan their trips in North Aceh by providing efficient routes according to their preferred tourism category preferences.
Keywords
Full Text:
PDFReferences
D. Udjulawa and S. Oktarina, ‘Penerapan Algoritma Ant Colony Optimization Untuk Pencarian Rute Terpendek Lokasi Wisata’, Klik - Jurnal Ilmu Komputer, vol. 3, no. 1, pp. 26–33, 2022, doi: 10.56869/klik.v3i1.326.
V. Risqiyanti, H. Yasin, and R. Santoso, ‘Pencarian Jalur Terpendek Menggunakan Metode Algoritma “Ant Colony Optimization” Pada GUI Matlab (Studi Kasus: PT Distriversa Buana Mas cabang Purwokerto)’, Jurnal Gaussian, vol. 8, no. 2, pp. 272–284, 2019, doi: 10.14710/j.gauss.v8i2.26671.
W. Fuadi, D. Fariadi, and D. A. Aqsa, ‘Ant Colony Optimization Pada E-Tourism Untuk Pemilihan Lokasi Tempat Wisata’, Jurnal Teknologi Terapan and Sains 4.0, vol. 4, no. 3, p. 92, 2023, doi: 10.29103/tts.v4i3.14616.
Z. Anshory, ‘(media cetak) Penerapan Algoritma Ant Colony Optimization Pada Aplikasi Pemandu Wisata Provinsi Sumatera Utara Berbasis Android’, Journal of Computer System and Informatics (JoSYC), vol. 1, no. 2, 2020.
E. Nurlaelasari, S. Stmik, K. Karawang, U. Tresna, and L. Stmik, ‘PENERAPAN ALGORITMA ANT COLONY OPTIMIZATION MENENTUKAN NILAI OPTIMAL DALAM MEMILIH OBJEK WISATA BERBASIS ANDROID’, Jurnal SIMETRIS, vol. 9, no. 1, 2018.
A. J. Dilaga, ‘PENERAPAN ALGORITMA BEE COLONY UNTUK OPTIMASI RUTE WISATA’, Sistem Informasi |, vol. 6, no. 2, pp. 75–78, 2019.
Aisya Qurratul A’yun, ‘Sistem Informasi Manajemen Laporan Produksi Bulanan Berbasis PHP Dan MYSQL’, Jurnal Riset Teknik Industri, pp. 157–166, Jan. 2024, doi: 10.29313/jrti.v3i2.3311.
K. Gita Larasati and E. Riksakomara, ‘THE DESIGN OF OPTIMIZATION SYSTEM OF WASTE TRANSPORT DISTRIBUTION ROUTE IN SIDOARJO REGENCY USING ANT COLONY OPTIMIZATION (ACO) ALGORITHM’, 5213.
R. K. D. Suhaeymi and Z. Yunizar, ‘Pemetaan Titik Penumpukan Sampah di Kota Lhokseumawe Menggunakan Metode Ant Colony Optimization’, Jurnal Elektronika dan Teknologi Informasi, vol. 4, no. 2, pp. 29–34, 2023.
A. Fariza, Arif Basofi, and Mochammad Rizki Hidayat, ‘Pencarian Jalur berdasarkan Kepadatan Lalu Lintas di Surabaya Menggunakan Algoritma Koloni Semut’, Journal of Applied Computer Science and Technology, vol. 1, no. 2, pp. 50–55, Dec. 2020, doi: 10.52158/jacost.v1i2.10.
C. Brucato, ‘THE TRAVELING SALESMAN PROBLEM’, 2010.
S. Kasus et al., ‘PENGEMBANGAN OBYEK DAN DAYA TARIK WISATA ALAM SEBAGAI DAERAH TUJUAN WISATA DI KABUPATEN KARANGANYAR’, Jurnal Sosiologi DILEMA, vol. 32, no. 1, 2017, [Online]. Available: https://jurnal.uns.ac.id/dilema,
‘Ardiansyah, Imam, and Hari Iskandar. Analisis Potensi Ekowisata Di Taman Wisata Alam Gunung Pancar Dengan Menggunakan Metode Analisis Ado–Odtwa. Jurnal Inovasi Penelitian 2.8 (2022) 2621-2630.’.
O. Ilmandira Ratu Farisi, B. Setiyono, R. Imbang Danandjojo, B. Penelitian dan Pengembangan Perhubungan, and K. Perhubungan Republik Indonesia Kementerian Perhubungan Republik Indonesia, ‘Farisi, A Hybrid Firefly Algorithm-Ant Colony Optimization for Traveling Salesman Problem 55 A Hybrid Firefly Algorithm-Ant Colony Optimization for Traveling Salesman Problem’.
Z. Li, Z. Tian, J. Zhao, and B. Wang, ‘Research on smooth path planning method based on improved ant colony algorithm optimized by Floyd algorithm’.
K. C. Hu, C. W. Tsai, M. C. Chiang, and C. S. Yang, ‘A Multiple Pheromone Table Based Ant Colony Optimization for Clustering’, Math Probl Eng, vol. 2015, 2015, doi: 10.1155/2015/158632.
H. Aditiawan, M. Amelia, and S. Rozaky, ‘OKTAL : Jurnal Ilmu Komputer dan Science Pengembangan Perangkat Lunak Program Inventarisasi Asset dengan Menggunakan PHP’, vol. 2, no. 5, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal
‘Santoso, Agustinus Budi. Belajar Pemrograman Web 1-Dasar PHP dengan Bootstrap MySQLi (Teori dan Praktek). Penerbit Yayasan Prima Agus Teknik (2023) 1-151.’.
J. Letkowski, ‘Doing database design with MySQL’. [Online]. Available: https://www.researchgate.net/publication/271910489
R. Hermiati, A. Asnawati, and I. Kanedi, ‘Pembuatan E-Commerce Pada Raja Komputer Menggunakan Bahasa Pemrograman Php Dan Database Mysql’, Jurnal Media Infotama, vol. 17, no. 1, pp. 54–66, 2021, doi: 10.37676/jmi.v17i1.1317.
DOI: https://doi.org/10.52088/ijesty.v5i2.857
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muhammad Teguh, Wahyu Fuadi, Zahratul Fitri