Recognition System Of The Al Qur’an Surah Al-Falaq Verse 1-5 Through Voice Using Ada-Boost

Diauddin Ismail

Abstract


In everyday life, it is not uncommon when we hear the sound of chanting the holy verses of the Al Al Qur’an  which are read in mosques before prayer time or in other conditions we seem interested in knowing what Surah and which verse is being recited. This is due to the love of Muslims themselves for the Al Qur’an  but not all Muslims memorize the entire contents of the Al Qur’an . Based on the limitations and the magnitude of curiosity about Surah and Verse information, the writer is interested in developing a computer system that can recognize and provide information on the recited Surah and Verse. Advances in computer technology not only make it easier for humans to carry out activities. One of the human intelligences that are planted into computer technology is to recognize the verses of the Al Al Qur’an  Surah Al-Falaq through voice. Ada-Boost method is one method to identify or recognize voice classification, and by using this method the success rate in recognizing verse numbers reaches 72%. This system can only recognize the number of verses of the Al Al Qur’an  Surah Al-Falaq, recorded sound files with the .wav file extension and built using the Delphi programming language.

Keywords


Technology, Al Qur’an, Ada-Boost, Recognation System.

Full Text:

PDF

References


Abdul Aziz Sidqi, dkk, 2013, Al- Al Qur’an Al-Karim Dan Terjemahnya, Penerbit Halim, Bogor.

Abdullah Dzakiy Royyan, 2016. Optimasi Komputasi Menggunakan Algoritma Quantum Grover Dan Keunggulannya Dalam Peme-cahan Permasalahan Pencarian. Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2016/2017.

Azizah, U.N. 2013. Perbandingan Detektor Tepi Prewit dan Detektor Tepi Laplacian Berdasarkan Kompleksitas Waktu dan Citra Hasil. Skripsi. Universitas Pendidikan Indonesia.

Fadlisyah. 2013. Sistem Pendeteksian Wajah pada Video Menggunakan Jaringan Adaptive Linear Neuron (ADALINE). Tesis. Pro-gram Studi Magister Teknik Elektro, Universitas Seumatera Utara (USU).

Fadlisyah dan Rizal. 2011. Pemograman Computer Vision Menggunakan Delphi + Vision Lab VCL 4.0.1. Yogyakarta : Graha Ilmu.

Fadlisyah, Bustami, dan M. Ikhwanus. 2013. Pengolahan Suara. Yogyakarta : Graha Ilmu.

Kadir, Abdul. 2013. Dasar Pengolahan Citra dengan DELPHI. Yogyakarta : Andi.

Max R. Kumaseh, Luther Latumakulita, Nelson Nainggolan. 2013. Segmentasi citra digital ikan menggunakan metode thresholding. Diambil dari (http://download.portalgaruda.org, diunduh pada 25 Agustus 2017).

Mukti Qamal. 2013. Klasifikasi Usia Menggunakan Ciri orde dua. Diambil dari (http://ejurnal.tif.unimal.ac.id, dinduh pada tanggal 20 Juni 2017).

Putra, Darma. 2010. Pengolahan Citra Digital. Yogyakarta : Andi.

Widodo, P. P., dan Herlawati. 2011. Menggunakan UML. Informatika Bandung. Bandung.




DOI: https://doi.org/10.52088/ijesty.v1i3.85

Article Metrics

Abstract view : 180 times
PDF - 112 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Diauddin Ismail

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674