Data Mining Analysis for Clustering the Number of Tb Patients in North Aceh Health Centers Using the Spectral Method Clustering
Abstract
Tuberculosis (TB) is one of the infectious diseases that is a significant concern in the world of health, especially in the North Aceh region. Grouping the number of TB patients based on severity and region is very important to support decision-making in further prevention and treatment efforts. This study applies the Spectral Clustering method to cluster the number of TB patients at Baktiya Health Center, Bayu Health Center, and Lhoksukon Health Center to identify patient distribution patterns based on severity categories. The system built is a web-based data mining analysis system using PHP and MySQL as a database. Clustering is done by dividing patients into three categories, low, medium, and high, based on five main criteria, namely age, gender, month of treatment, diagnosis results, and patient address. The results showed that Lhoksukon Health Center had the highest number of TB patients, with 136 patients (37.06%), an average age of 48.6 years, and the most cases occurred in December 2022. Bayu Health Center was at a moderate level with 130 patients (35.42%), most of whom were 45.5 years old, and most cases occurred in November 2023. Meanwhile, Baktiya Health Center had the lowest number of patients, 101 (27.52%), with the most cases occurring in November. From the clustering results, it can be concluded that the Spectral Clustering method can group TB patients well to help medical personnel and related parties develop more effective intervention strategies based on the region and severity of the patient.
Keywords
Full Text:
PDFReferences
A. J. Melya Findi, “Dampak Polusi Udara Pada Meningkatkan Penderita Tuberkulosis,” Sobat TB. Yayasan KNCV Indonesia., 2022. .
R. D. Cahyaningrum, A. Bustamam, and T. Siswantining, “Implementation of spectral clustering with partitioning around medoids (PAM) algorithm on microarray data of carcinoma,” AIP Conf. Proc., vol. 1825, no. March, 2017, doi: 10.1063/1.4978976.
D. Ismail, “Recognition System Of The Al Qur’an Surah Al-Falaq Verse 1-5 Through Voice Using Ada-Boost,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 3, 2021, doi: 10.52088/ijesty.v1i3.85.
D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, “Soft robotics: Biological inspiration, state of the art, and future research,” Appl. Bionics Biomech., vol. 5, no. 3, pp. 99–117, 2008, doi: 10.1080/11762320802557865.
Kemenkes, “Kesehatan Di Fasyankes Tingkat Pertama ( Fktp ) Pasien Tuberkulosis.”
F. Matriadi, I. Ikramuddin, M. Adamy, and C. Chalirafi, “Implementation of Digital Leaderships on Pertamina Hulu Energy in Aceh,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 2, pp. 125–129, 2021, doi: 10.52088/ijesty.v1i2.132.
A. Muthiah, U. Padjadjaran, J. Prof, E. No, K. Sukajadi, and K. Bandung, “Jurnal Epidemiologi Kesehatan Indonesia Karakteristik Pasien Tuberkulosis Lost to Follow Up dari Empat RS di Kota Bandung Karakteristik Pasien Tuberkulosis Lost to Follow Up dari Empat RS di Kota Bandung Characteristics of Tuberculosis Lost to Follow Up Patients from Four Hospitals in Bandung,” vol. 3, no. 1, 2019, doi: 10.7454/epidkes.v3i1.3208.
U. L. U. Palembang, “Unnes Journal of Public Health,” vol. 6, no. 4, 2017.
E. Mutiara and S. Novita, “Characteristics of Multi-drug Resistant Tuberculosis ( MDR-TB ) Patients in Medan City in 2015-2016,” pp. 2–7, 2018.
“Mycobacterium tuberculosis ,” pp. 10–21, 2017.
A. T. Sitanggang and Y. Desnelita, “Tingkat Pemahaman Mahasiswa antar Pembelajaran Online dan Offline dalam Masa Pandemi Covid-19 Menggunakan Metode Forward Chaining,” J. Inf. dan Teknol., vol. 4, no. 1, pp. 64–69, 2022, doi: 10.37034/jidt.v4i1.187.
K. H. Manurung and A. E. Syaputra, “Expert System Diagnosis Penyakit Asma Bronkial dengan Certainty Factor pada Klinik Sari Ramadhan Berbasis Web,” J. Sistim Inf. dan Teknol., vol. 5, no. 2, pp. 4–7, 2023, doi: 10.37034/jsisfotek.v5i1.218.
M. N. Bustan, Pengantar Epidemiologi. 2006.
Buku Ajar Ilmu Penyakit Dalam Edisi 6 Jilid 1. .
F. Zahra, M. A. Ridla, and N. Azise, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang (Studi Kasus : Toko Sinar Harahap),” JUSTIFY J. Sist. Inf. Ibrahimy, vol. 3, no. 1, pp. 55–65, 2024, doi: 10.35316/justify.v3i1.5335.
Y. S. Haryanti, Syarifah Nur , Nugroho, “Perbandingan 3 Metode Dalam Data Mining Untuk Penjurusan Siswa Di SMA N 3 Boyolali,” 2015.
I. M. A. W. Putra, G. Indrawan, and K. Y. E. Aryanto, “Sistem Rekomendasi Berdasarkan Data Transaksi Perpustakaan Daerah Tabanan dengan menggunakan K-Means Clustering,” J. Ilmu Komput. Indones., vol. 3, no. 1, pp. 18–22, 2018.
N. Salsabila, “Klasifikasi Barang Menggunakan Metode Clustering K-Means Dalam Penentuan Prediksi Stok Barang ( Studi Kasus : Ukm Mar ’ Ah Jilbab Kediri ),” 2019.
M. Meila?, “Spectral Clustering: a Tutorial for the 2010’s,” Handb. Clust. Anal., p. 753, 2015.
A. Yudhana, S. Sunardi, and A. J. S. Hartanta, “Algoritma K-Nn Dengan Euclidean Distance Untuk Prediksi Hasil Penggergajian Kayu Sengon,” Transmisi, vol. 22, no. 4, pp. 123–129, 2020, doi: 10.14710/transmisi.22.4.123-129.
Soegiyono, Metode Penelitian Kuantitatif, Kualitatif dan R&D. 2011.
Prof.Dr.Sugiyono, “Metode_Penelitian_Pendidikan_Sugiyono_20.pdf.” pp. 47–281, 2015.
Q. R. Hidayati and S. Surono, “Implementasi Algoritma Spectral Clustering Untuk Analisis Sentimen,” Delta J. Ilm. Pendidik. Mat., vol. 9, no. 1, p. 27, 2021, doi: 10.31941/delta.v9i1.1229.
t bayu Kurniawan and Syarifuddin, “Perancangan Sistem Aplikasi Pemesanan Makanan dan Minuman Pada Cafetaria NO Caffe di TAnjung Balai Karimun Menggunakan Bahasa Pemrograman PHP dan MySQL,” J. Tikar, vol. 1, no. 2, pp. 192–206, 2020.
DOI: https://doi.org/10.52088/ijesty.v5i2.847
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Khainesya, Eva Darnila, Risawandi