Student Learning Style Decision-Making System Using the Multi-Attribute Utility Theory Method at SMA Negeri 1 Jangka
Abstract
Education plays a vital role in shaping individual development and national progress. One key factor influencing learning effectiveness is students' learning styles, which determine how individuals absorb, organize, and process information. Understanding these differences is crucial for designing effective teaching methods. This research develops a Decision Support System (DSS) to determine student learning styles at SMA Negeri 1 Jangka using the Multi-Attribute Utility Theory (MAUT) method. MAUT is chosen for its ability to evaluate multiple criteria, convert them into numerical values, and systematically identify the most suitable learning approach. The alternatives in this study include Project Based Learning (PBL), Problem-Based Learning (PrBL), Inquiry-Based Learning (IBL), Discovery Learning (DL), and Contextual Teaching and Learning (CTL). The MAUT analysis considers five criteria: student activeness, material understanding, collaboration, initiative and creativity, and teacher-student communication. The research stages include literature study, data collection, system and database design, MAUT implementation, and system evaluation. The results, based on MAUT calculations, show that Inquiry-Based Learning (IBL) scores the highest at 13.611, followed by Discovery Learning (DL) at 13.018, Problem-Based Learning (PrBL) at 12.975, Contextual Teaching and Learning (CTL) at 12.929, and Project Based Learning (PBL) at 12.558. This system assists educators in designing personalized learning strategies that align with students' strengths. Leveraging data-driven analysis enhances education quality, fosters a student-centred learning environment, and improves academic performance and lifelong learning habits.
Keywords
Full Text:
PDFReferences
R. A. Putri, I. Magdalena, A. Fauziah, and F. N. Azizah, “PENGARUH GAYA BELAJAR TERHADAP PEMBELAJARAN SISWA SEKOLAH DASAR,” Jurnal Ilmiah Indonesia, Februari, vol. 2020, no. 2, pp. 157–163, [Online]. Available: http://cerdika.publikasiindonesia.id/index.php/cerdika/index-157-
I. R. Khoeron, N. Sumarna, and T. Permana, “PENGARUH GAYA BELAJAR TERHADAP PRESTASI BELAJAR PESERTA DIDIK PADA MATA PELAJARAN PRODUKTIF,” 2014.
B. Dwi Pranata, U. Mahdiyah, P. Kasih, U. Nusantara, and P. Kediri, “Pemodelan Gaya Belajar Siswa dengan Menggunakan Support Vector Machine”, [Online]. Available: https://ojs.unpkediri.ac.id/index.php/noe
Y. Patandung and S. Panggua, “Analisis Masalah-Masalah Pendidikan dan Tantangan Pendidikan Nasional.” [Online]. Available: https://sinestesia.pustaka.my.id/journal/article/view/277
E. Suseno, E. Syakira, and R. Trisudarmo, “Sistem Pendukung Keputusan Penentuan Gaya Belajar Siswa Menggunakan Metode Profile Matching”.
R. Puspita, “Metode Multi Attribute Utility Theory (MAUT) dalam Keputusan Pengendalian Persediaan Obat dan Alat Kesehatan,” Jurnal Informatika Ekonomi Bisnis, pp. 78–83, Sep. 2022, doi: 10.37034/infeb.v4i3.148.
Y. Afrillia, W. Fuadi, and A. I. Lestari, “Pemilihan Tempat Kost Menggunakan Metode Multi Attribute Utility Theory Dan Algo-ritma A*,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 2, Aug. 2023, doi: 10.28932/jutisi.v9i2.6279.
M. Hidayat, P. Alam Jusia, S. Dinamika Bangsa, P. Studi Sistem Informasi, and J. Jl Jendral Sudirman, “Analisa dan Perancangan Sistem Pendukung Keputusan Untuk Penerimaan Karyawan PT. Dos Ni Roha Jambi Menggunakan Metode MAUT (Multi Attrib-ute Utility Theory),” 2018.
S. N. #1 and E. Ramaraj, “Classification algorithm in Data mining: An Overview,” International Journal of P2P Network Trends and Technology, vol. 4, 2013, [Online]. Available: http://www.ijpttjournal.org
S. R. Joseph, H. Hlomani, and K. Letsholo, “Data Mining Algorithms: An Overview SUBJECT CLASSIFICATION TYPE (METHOD/APPROACH).”
S. Kalmegh, “Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News,” 2015. [Online]. Available: www.ijiset.com
P. Edastama, A. Bist, and A. Prambudi, “Implementation Of Data Mining On Glasses Sales Using The Apriori Algorithm,” 2021. [Online]. Available: https://iiast-journal.org/ijcitsm/index.php/IJCITSM/article/view/46
“Research on Adaptive Algorithm Recommendation System Based on Parallel Data Mining Platform,” Advances in Computer, Signals and Systems, vol. 8, no. 5, 2024, doi: 10.23977/acss.2024.080503.
C. Bachri and A. Riyandi, “PERANCANGAN SISTEM PENUNJANG KEPUTUSAN UNTUK MEMILIH GAYA BELAJAR ANAK SECARA ISLAMI DENGAN METODE BAYES BERBASIS ANDROID.”
A. Riani, T. Taryo, A. Hindasyah, J. Raya Puspitek, and K. Tangerang Selatan, “Analisis Komparasi Metode Sistem Pendukung Keputusan pada Gaya Belajar ‘VARK’”.
R. Huda, S. Defit, R. Sovia, and F. I. Komputer, “Metode Multi Attribute Utility Theory Dalam Pemilihan Dosen Terbaik Ber-dasarkan Kinerja.”
N. Widianningsih, R. Defi, and M. Putri, “Sistem Pendukung Keputusan Gaya Belajar Anak Usia 12 s/d 18 Tahun dengan Pro-gram Bantu Media Visual Aural Read Kinesthetik (VARK).”
I. Naufal and N. Nurdin, “SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PENYAKIT PADA TANAMAN TERONG MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING,” TECHSI - Jurnal Teknik Informatika, vol. 12, no. 1, p. 123, Apr. 2020, doi: 10.29103/techsi.v12i1.2379.
R. R. Waliyansyah, M. Novita, and L. P. Aditasar, “Sistem Pakar Penentuan Gaya Belajar Siswa Dengan Metode Forward Chain-ing Berbasis Web,” IT Journal Research and Development, vol. 5, no. 1, pp. 32–44, Jul. 2020, doi: 10.25299/itjrd.2020.vol5(1).4740.
M. U. Rizal Tjut Adek, A Survey on The Accuracy of Machine Learning Techniques for Intrusion and Anomaly Detection on Pub-lic Data Sets. IEEE, 2020.
DOI: https://doi.org/10.52088/ijesty.v5i2.842
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Munawarah, Wahyu Fuadi, Hafizh Al Kautsar Aidilof