Weather Classification and Prediction on Imagery Using Boltzmann Machine

Rasna Rasna, Moh. Rahmat Irjii Matdoan, Junaidi Salat, Fitria J, Seno Lamsir

Abstract


Weather is a physical process or event that occurs in the atmosphere at a specific time and place, as well as its changes over a short period in a particular location on Earth. To produce weather forecast information, there is a series of processes that must be carried out until the weather information is conveyed accurately. The stages involved in the feature extraction process are carried out first. This process is carried out to obtain specific characteristics or features from a dataset. After the feature extraction process has been completed, the next step is to predict the weather based on the input images. To classify the weather on Earth using various algorithms, one of which is the Machine Boltzmann. The pattern recognition method used is Machine Boltzmann as an application of a simpler and more complex method. Generally, the weather prediction system using Machine Boltzmann consists of several stages, namely image acquisition, greyscale processing, segmentation/location using Sobel edge detection, classification using the Machine Boltzmann method, and finally producing output in the form of weather class results. The classification process in this research involves images of clear, cloudy, and rainy weather as inputs. The output of the system is the determination of whether the input weather image falls into the category of clear, cloudy, or rainy weather. The results of the study show that the classification of weather based on captured images has the highest accuracy for clear weather, with a percentage of 73.33%. For cloudy weather, the success rate is equal to the error rate, which is 50%, while rainy weather was not recognized at all.


Keywords


Weather, Machine Boltzman, Image, Grey-Scale, Prediction

Full Text:

PDF

References


S. Sasake, Y. A. Lesnussa, and A. Z. Wattimena, “Peramalan Cuaca Menggunakan Metode Rantai Markov (Studi Kasus: Cuaca Harian Di Kota Ambon),” J. Mat., vol. 11, no. 1, p. 1, 2021.

S. A. Suryaman, R. Magdalena, and S. Sa’idah, “Klasifikasi Cuaca Menggunakan Metode VGG-16, Principal Component Analysis Dan K-Nearest Neighbor,” J. Ilmu Komput. Dan Inform., vol. 1, no. 1, pp. 1–8, 2021.

M. F. R. Mahendra, S. Sumarno, and N. L. Azizah, “Implementasi Machine Learning Untuk Memprediksi Cuaca Menggunakan Support Vector Machine,” J. Ilm. Komputasi, vol. 23, no. 1, pp. 45–50, 2024.

A. N. Azizah, J. Raharjo, and S. A. Wibowo, “Perkiraan Cuaca Berbasis Analisis Data Menggunakan Metode Coarse to Fine Search dan Fuzzy Logic Studi Kasus Cuaca Berpotensi Hujan,” eProceedings Eng., vol. 6, no. 2, 2019.

A. U. Akmal and T. Wijinarko, “Konsep Dasar Bumi Antariksa dan Kimia,” 2022.

S. Suhadi, F. Mabruroh, A. Wiyanto, and I. Ikra, “Analisis Fenomena Perubahan Iklim Terhadap Curah Hujan Ekstrim,” Opt. J. Pendidik. Fis., vol. 7, no. 1, pp. 94–100, 2023.

V. I. Yani, A. Aradea, and H. Mubarok, “Optimasi Prakiraan Cuaca Menggunakan Metode Ensemble pada Na{"i}ve Bayes dan C4. 5,” J. Tek. Inform. Dan Sist. Inf., vol. 8, no. 3, pp. 607–619, 2022.

A. Decelle and C. Furtlehner, “Restricted Boltzmann machine: Recent advances and mean-field theory,” Chinese Phys. B, vol. 30, no. 4, p. 40202, 2021.

Y. Shingu et al., “Boltzmann machine learning with a variational quantum algorithm,” Phys. Rev. A, vol. 104, no. 3, p. 32413, 2021.

P. N. Andono, T. Sutojo, and others, Pengolahan citra digital. Penerbit Andi, 2018.

S. Sholehudin, A. F. Huda, D. Restiani, and D. I. S. Saputra, “Proses digitalisasi citra analog menggunakan aplikasi pengolah citra digital,” SEMNASTEKNOMEDIA ONLINE, vol. 5, no. 1, pp. 4–6, 2017.

D. Li and M. Wu, “Pattern recognition receptors in health and diseases,” Signal Transduct. Target. Ther., vol. 6, no. 1, p. 291, 2021.

W. Burger and M. J. Burge, Digital image processing: An algorithmic introduction. Springer Nature, 2022.

K. G. Dhal, A. Das, S. Ray, J. Gálvez, and S. Das, “Histogram equalization variants as optimization problems: a review,” Arch. Comput. Methods Eng., vol. 28, pp. 1471–1496, 2021.

R. A. Hamzah, M. M. Roslan, A. F. bin Kadmin, S. F. bin Abd Gani, and K. A. A. Aziz, “JPG, PNG and BMP image compression using discrete cosine transform,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 19, no. 3, pp. 1010–1016, 2021.

H. Liu et al., “Variability in the interpretation of grey-scale ultrasound features in assessing thyroid nodules: A systematic review and meta-analysis,” Eur. J. Radiol., vol. 129, p. 109050, 2020.

S. Supiyandi, T. Panggabean, N. Ramadhan, S. R. Dewi, and S. Yusra, “Deteksi Tepi Sederhana Pada Citra Menggunakan Operator Sobel,” Repeater Publ. Tek. Inform. dan Jar., vol. 2, no. 3, pp. 43–56, 2024.

A. Saputra and others, “Penerapan Jaringan Saraf Tiruan/JST (Backpropagation) untuk Prakiraan Cuaca di Bandar Udara Radin Inten II Lampung,” UNIVERSITAS LAMPUNG, 2022.

B. Kiraly, E. J. Knol, W. M. J. van Weerdenburg, H. J. Kappen, and A. A. Khajetoorians, “An atomic Boltzmann machine capable of self-adaption,” Nat. Nanotechnol., vol. 16, no. 4, pp. 414–420, 2021.

C. A. Intyas, J. A. Putritamara, and N. Haryati, Dinamika Agrobisnis Era VUCA: Volatility, Uncertainty, Complexity, Ambiguity. Universitas Brawijaya Press, 2022.




DOI: https://doi.org/10.52088/ijesty.v5i2.806

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Rasna Rasna, Moh. Rahmat Irjii Matdoan, Junaidi Salat, Fitria, Seno Lamsir

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674