Application of Fuzzy C-Means and Borda in Clustering Crime–Prone Areas and Predicting Crime Rates Using Long Short Term Memory in Northern Aceh Regency

Syahrul Andika Lubis, Munirul Ula, Sujacka Retno

Abstract


North Aceh is a district with diverse geographical conditions, ranging from vast lowland areas in the north stretching from west to east, to mountainous areas in the south. The average altitude in North Aceh is 125 meters. The district covers an area of 2,694.66 km² with a population of 614,640 people in 2022. The issue of crime in North Aceh District has caused significant discomfort among the community. According to data from the Central Bureau of Statistics (BPS) of Aceh Province, the number of criminal cases increased from 6,651 cases in 2022 to 10,137 cases in 2023. Using the Fuzzy C-Means clustering method, the data was grouped into three clusters: cluster 1 represents safe areas, cluster 2 represents moderately vulnerable areas, and cluster 3 represents vulnerable areas. For ranking using the Borda method, the Dewantara Police Sector ranked first for the physical aspect, while the Muara Batu Police Sector ranked first for the item aspect. As for predictions using the LSTM model, almost all subdistricts achieved MAPE values below 20%, indicating that the LSTM model is quite effective in predicting crime-prone areas. For example, Baktiya District recorded a MAPE value of 15.85% for the physical aspect, while the best result was achieved by Simpang Keramat District for the item aspect with a MAPE value of 0.00%. However, in Syamtalira Bayu District, the item aspect reached a MAPE value of 20.07%. Although the MAPE value for the item aspect in Syamtalira Bayu is relatively high, it is still considered acceptable as it remains below 50%.


Keywords


North Aceh Crime, Fuzzy C-Means, Borda, Long Short-Term Memory, MAPE

Full Text:

PDF

References


M. Dulkiah, Sosiologi Kriminal. 2020.

M. Jannah dkk., “Implementation of Geographic Information System for Tourist Locations and Lodging Services in Lhokseumawe City Based on Android,” Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 4, hal. 39–47, 2022, doi: 10.52088/ijesty.v2i4.320.

R. K. Dinata, B. Bustami, S. Retno, dan ..., “Clustering the Spread of ISPA Disease Using the Fuzzy C-Means Algorithm in Aceh Utara,” Int. …, vol. 1, no. 2, hal. 21–30, 2022, [Daring]. Tersedia pada: http://ejournal.enlightenlearner.com/index.php/ejournal/article/view/16

M. Ula, M. Ula, D. Yulisda, dan S. Susanti, “Fuzzy C-Means with Borda Algorithm in Cluster Determination System for Food Prone Areas in Aceh Utara,” Ilk. J. Ilm., vol. 15, no. 1, hal. 21–31, 2023, doi: 10.33096/ilkom.v15i1.1481.21-31.

D. L. Pardosi dan I. D. Siagian, “Klasterisasi Data Lowongan Pekerjaan Berdasarkan Fuzzy,” J. Ilmu Komput. dan Sist. Inf., vol. 3, no. 2, hal. 27–31, 2020.

C. Rahayu, D. Abdullah, dan Z. Yunizar, “Implementation of Long Short Term Memory (Lstm) Algorithm for Predicting Stock Price Movements of Lq45 Index (Case Study …,” Bull. Eng. Sci. …, vol. 1, no. 2, hal. 50–59, 2023, [Daring]. Tersedia pada: https://bestijournal.org/index.php/go/article/view/6

S. Asyuti dan A. A. Setyawan, “Data Mining Dalam Penggunaan Presensi Karyawan Denga Cluster Means,” J. Ilm. Sains Teknol. Dan Inf., vol. 1, no. 1, hal. 01–10, 2023, [Daring]. Tersedia pada: https://jurnal.alimspublishing.co.id/index.php/JITI/article/download/6/6

Bomanthara dan R. M. Nasrul Halim, “Implementasi Metode K-Means Clustering UntukMenentukan Tingkat Peminatan Konsumen Terhadap TypeSmartphone Di Tio Cell Dan Tio Cell 2,” JUPITER J. Penelit. Ilmu dan Teknol. Komput., vol. 15, no. 1a, hal. 49–60, 2023, [Daring]. Tersedia pada: https://jurnal.polsri.ac.id/index.php/jupiter/article/view/5191

N. Ulinnuha, “Provincial Clustering in Indonesia Based on Plantation Production Using Fuzzy C-Means,” ITSMART J. Ilm. Teknol. dan Inf., vol. 9, no. 1, hal. 8–12, 2020.

E. Satriani, Ilhamsyah, dan R. P. Sari, “Sistem Pendukung Keputusan Kelompok Penerima Zakat Program Pendidikan Dengan Metode Saw Dan Borda,” J. Komput. dan Apl., vol. 07, no. 02, hal. 71–81, 2019.

Moch Farryz Rizkilloh dan Sri Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, hal. 25–31, 2022, doi: 10.29207/resti.v6i1.3630.




DOI: https://doi.org/10.52088/ijesty.v5i1.747

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Syahrul Andika Lubis, Munirul Ula, Sujacka Retno

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674