Sentiment Analysis of Free Online Novel Applications Using the Support Vector Machine Method
Abstract
Sentiment analysis is a study to analyze opinions and perceptions of various topics, products, or services. With the advancement of technology, people now have easier access to literary works online, including novels. The shift from offline to online reading has resulted in a large volume of review data, necessitating an automated system to classify this data. This research aims to analyze the sentiment of reviews for online novel applications using the Support Vector Machine (SVM) algorithm. The data used in this study was gathered from user reviews of the Wattpad, Noveltoon, and Joylada applications downloaded from the Google Play Store. The results show that the Wattpad application achieved 63% accuracy, 50% precision, 64% recall, and 56% F1-score, with a 41% positive and 59% negative sentiment distribution. The Noveltoon application achieved 70% accuracy, 69% precision, 73% recall, and 71% F1 score, with a 48% positive and 52% negative sentiment distribution. The Joylada application recorded 67% accuracy, 55% precision, 92% recall, and 69% F1-score, with a 57% positive and 43% negative sentiment distribution. The results of this analysis can help understand user preferences towards online novel applications and provide insights into their impact on the application's image and user interactions.
Keywords
Full Text:
PDFReferences
Husain, N. P., Sukirman, S., & SAJIAH, S. (2024). Analisis Sentimen Ulasan Pengguna Tiktok pada Google Play Store Berbasis TF IDF dan Support Vector Machine. Journal of System and Computer Engineering (JSCE), 5(1), 91–102. https://doi.org/10.61628/jsce.v5i1.1105
Pratama, F., Nasir, M., & Sauda, S. (2020). Implementasi Metode Klasifikasi Dengan Algoritma Support Vector Machine Untuk Menentukan Stok Persediaan Barang Pada Koperasi Karyawan Pangan Utama. Journal of Software Engineering Ampera, 1(2), 71–81. https://doi.org/10.51519/journalsea.v1i2.46
Ariqoh, S., Sunandar, M. A., & Muhyidin, Y. (2023). Analisis Sentimen Pada Produk Cushion Di Website Female Daily Menggunakan Metode Support Vector Machine (Svm). STORAGE: Jurnal Ilmiah Teknik Dan Ilmu Komputer, 2(3), 137–142. https://doi.org/10.55123/storage.v2i3.2345
Toresa, D., Rico Francsisco Sitorus, S., Muzdalifah, I., Wiza, F., & Syelly, R. (2024). Analisis Sentimen Terhadap Ulasan Penggunaan Dompet Digital Dana Mengunakan Metode Klasifikasi Support Vector Machine. Technologica, 3(2), 64–74. https://doi.org/10.55043/technologica.v3i2.163
Ahmad, K. (2023). Analisis Sentimen Pinjaman Online Akulaku dan Kredivo dengan metode Support Vector Machine (SVM). Journal of Mandalika Literature, 4(4), 323–332. https://doi.org/10.36312/jml.v4i4.2045
Que, V. K. S., Iriani, A., & Purnomo, H. D. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 162–170. https://doi.org/10.22146/jnteti.v9i2.102
Hidayat, F. N., & Sugiyono, S. (2023). Analisis Sentimen Masyarakat Terhadap Perekrutan Pppk Pada Twitter Dengan Metode Naive Bayes Dan Support Vector Machine. Jurnal Sains Dan Teknologi, 5(2), 665–672. https://doi.org/10.55338/saintek.v5i2.1359
Rahayu, D. S., Afifah, J., & Intan, S. (2023). Classification of Diabetes Mellitus Using C4 . 5 Algorithm , Support Vector Machine ( SVM ) and Linear Regression Klasifikasi Penyakit Diabetes Melitus Menggunakan Algoritma C4 . 5 , Support Vector Machine ( SVM ) dan Regresi Linear. SENTIMAS: Seminar Nasional Penelitian Dan Pengabdian Masyarakat, 1(1 SE-), 56–63. https://journal.irpi.or.id/index.php/sentimas/article/view/550
Alun Sujjadaa, Somantri, Juwita Nurfazri Novianti, & Indra Griha Tofik Isa. (2023). Analisis Sentimen Terhadap Review Bank Digital Pada Google Play Store Menggunakan Metode Support Vector Machine (Svm). Jurnal Rekayasa Teknologi Nusa Putra, 9(2), 122–135. https://doi.org/10.52005/rekayasa.v9i2.345
Rozi, F. N., & Sulistyawati, D. H. (2019). Klasifikasi Berita Hoax Pilpres Menggunakan Metode Modified K-Nearest Neighbor Dan Pembobotan Menggunakan Tf-Idf. Konvergensi, 15(1). https://doi.org/10.30996/konv.v15i1.2828
Ula, M., & Fachrurrazi, S. (2023). Analisis Sentimen Cyberbullying pada Media Sosial Twitter menggunakan Metode Support Vector Machine dan Naïve Bayes Classifier. TECHSI - Jurnal Teknik Informatika, 14(2), 91. https://doi.org/10.29103/techsi.v14i2.12103
Tri Putra, K., Amin Hariyadi, M., & Crysdian, C. (2023). Perbandingan Feature Extraction Tf-Idf Dan Bow Untuk Analisis Sentimen Berbasis Svm. Jurnal Cahaya MAndalika, 1449
Annisa, L., Kalifia, A. D., Bisnis, F., Humaniora, D., & Yogyakarta, U. T. (2024). Analisis Teknik TF-IDF Dalam Identifikasi Faktor-Faktor PenyebabDepresi Pada Individu. Januari, 2, 302–307
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, & Fitri Nurapriani. (2023). Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. Jurnal KomtekInfo, 10, 1–7. https://doi.org/10.35134/komtekinfo.v10i1.330
Dinata, R. K., Fajriana, F., Zulfa, Z., & Hasdyna, N. (2020). Klasifikasi Sekolah Menengah Pertama/Sederajat Wilayah Bireuen Menggunakan Algoritma K-Nearest Neighbors Berbasis Web. CESS (Journal of Computer Engineering, System and Science), 5(1), 33. https://doi.org/10.24114/cess.v5i1.14962
DOI: https://doi.org/10.52088/ijesty.v5i1.732
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Yulidayanti, Safwandi, Fajriana