Application of Multiple Linear Regression Method for Predicting Fish Production Based on Cultivation Type

Hendra Putranta Limbong, Dahlan Abdullah, Said Fadlan Anshari

Abstract


One of the contributors to Indonesia's economy is the fisheries sector, which has a high potential for development. Fisheries are a highly promising subsector for development in Indonesia's growth efforts. Based on data from the Central Bureau of Statistics of Dairi Regency, three types of aquacultures remain actively utilized in each subdistrict: ponds/freshwater ponds and paddy fields. This research aims to develop a fish production prediction system based on aquaculture types using the Multiple Linear Regression method. The accuracy of the prediction results will be measured using the Mean Absolute Percentage Error (MAPE). The results of this study indicate that in almost every subdistrict, especially pond aquaculture, the MAPE value is <20%, which means it has good accuracy. However, exceptions are found in the Siempat Nempu Hulu subdistrict, which has a MAPE value of 34.29%, and the Silahisabungan subdistrict, which has a MAPE value of 43.78%. Despite these values, they are still categorized as sufficient since they are <50%. The lower the MAPE value, the more accurate the prediction results. The findings of this research show that the multiple linear regression method can be considered correct. For future predictions, some results show negative values. For instance, in Silimapunggapungga subdistrict, a decline in production is predicted for 2024 with -114.779 tons and 2025 with -134.316 tons. The pessimistic prediction results are caused by the decrease in the X2 variable (area size), leading to a minor Y (production) value, potentially becoming negative if the contribution of X2 is no longer sufficient to balance the values of X1 (b1) and a. On the other hand, the Lae Parira subdistrict is predicted to experience an increase in production in 2024 by 87.024 tons and in 2025 by 84.380 tons. This system is implemented using the Python programming language. It is expected to help relevant stakeholders understand production trends and enhance the efficiency of fisheries resource management in the Dairi Regency.


Keywords


Production Prediction, Multiple Linear Regression; Fisheries; MAPE; Python

Full Text:

PDF

References


A. N. Suyono, Rifki, and Kaukab Elfan M, “Pengaruh Harga Jual, Luas Lahan dan Biaya Produksi Terhadap Pendapatan Usaha Budidaya Ikan Konsumsi Air tawar,” 2022.

S. F. Asnhari et al., 2019 7th International Conference on Information and Communication Technology (ICoICT) : July 24-26, 2019, Kuala Lumpur, Malaysia. 2019.

D. Miftahul Huda, G. Dwilestari, and A. Rizki Rinaldi, “Jurnal Informatika dan Rekayasa Perangkat Lunak Prediksi Harga Mobil Bekas Menggunakan Algoritma Regresi Linear Berganda,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 150–157, 2024.

S. Lailiyah, A. Yusnita, and L. Hariri, “Prediksi Persediaan Bahan Baku Untuk Produksi Makanan Olahan ‘Sanggar Krispi’ Menggunakan Metode Regresi Linear Berganda,” Simkom, vol. 8, no. 2, pp. 84–94, 2023, doi: 10.51717/simkom.v8i2.141.

Y. Aryani, “Sistem Informasi Penjualan Barang Dengan Metode Regresi Linear Berganda Dalam Prediksi Pendapatan Perusahaan,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 2, no. 2, pp. 39–51, 2020, doi: 10.52005/jursistekni.v2i2.47.

A. N. Maharadja, I. Maulana, and B. A. Dermawan, “Penerapan Metode Regresi Linear Berganda untuk Prediksi Kerugian Negara Berdasarkan Kasus Tindak Pidana Korupsi,” J. Appl. Informatics Comput., vol. 5, no. 1, pp. 95–102, 2021, doi: 10.30871/jaic.v5i1.3184.

L. Saragih, “Penerapan Data Mining Untuk Memprediksi Jumlah Produksi Kelapa Sawit Menggunakan Metode Regresi Linear Berganda (Studi Kasus: PT. Padasa Enam Utama),” 2021.

Hendra Di Kesuma, D. Apriadi, H. Juliansa, and E. Etriyanti, “Implementasi Data Mining Prediksi Mahasiswa Baru Menggunakan Algoritma Regresi Linear Berganda,” J. Ilm. Bin. STMIK Bina Nusant. Jaya Lubuklinggau, vol. 4, no. 2, pp. 62–66, 2022, doi: 10.52303/jb.v4i2.74.

D. Abdullah, M. Maryana, and M. Ani, “Prediksi Tingkat Pengguna Narkoba Dengan Metode Regresi Linear Berganda Berbasis Web,” TECHSI - J. Tek. Inform., vol. 13, no. 2, p. 41, 2021, doi: 10.29103/techsi.v13i2.3738.

D. Abdullah et al., "Application of Data Mining Prediction of Electricity Deviation Flow Using Metode Backpropogation at PLN Binjai Area," in Journal of Physics: Conference Series, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1742-6596/1363/1/012067.

E. Tachi and N. & Andri, “Penerapan Data Mining Untuk Analisis Daftar Pembelian Konsumen Dengan Menggunakan Algoritma Apriori Pada Transaksi Penjualan Toko Bangunan MDN,” 2021.

D. S. O. Panggabean, E. Buulolo, and N. Silalahi, “Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda,” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, p. 56, 2020, doi: 10.30865/jurikom.v7i1.1947.

H. Elvaningsih and F. Tawakal, Seminar Nasional Sains dan Teknologi Informasi (SENSASI) Prediksi Stok Obat Menggunakan Metode Backpropagation (Studi Kasus: Puskesmas Dumai Barat). 2021. [Online]. Available: http://prosiding.seminar-id.com/index.php/sensasi/issue/archivePage%7C228

M. R. Fauzi and I. D. Mulyana, “Implementasi Data Mining Menggunakan Metode Least Square untuk Memprediksi Penjualan Lampu LED pada PT. Sumber Dinamika Solusitama,” vol. 1, 2021, [Online]. Available: http://sostech.greenvest.co.id

S. Rahman et al., “Python : Dasar Dan Pemrograman Berorientasi Objek Tahta Media Group,” 2023.




DOI: https://doi.org/10.52088/ijesty.v5i1.717

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Hendra Putranta Limbong, Dahlan Abdullah, Said Fadlan Anshari

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674