Implementation of Simple Exponential Smoothing and Weighted Moving Average in Predicting Netflix Stock Prices
Abstract
This study aims to develop a stock price prediction system for Netflix using the Simple Exponential Smoothing and Weighted Moving Average methods and evaluate the accuracy of both methods. The system provides future stock price estimates based on historical data and includes evaluation metrics such as Mean Absolute Error and Mean Absolute Percentage Error. The implementation results show that SES achieved an MAE of 4.40 and a MAPE of 1.08%, while WMA resulted in an MAE of 8.65 and a MAPE of 2.11%. These findings indicate that SES is more effective in predicting stock prices with lower error rates, particularly for stable historical data. In contrast, WMA is more responsive to short-term trends but less accurate overall. Based on the results, SES is recommended as the developed system's primary method for stock price prediction.
Keywords
Full Text:
PDFReferences
N. N. M. Cahyani and L. P. Mahyuni, “AKURASI MOVING AVERAGE DALAM PREDIKSI SAHAM LQ45 DI BURSA EFEK INDONESIA,” E-Jurnal Manajemen Universitas Udayana, vol. 9, no. 7, p. 2769, Jul. 2020, doi: 10.24843/ejmunud.2020.v09.i07.p15.
S. J. Pipin, R. Purba, and H. Kurniawan, “Prediksi Saham Menggunakan Recurrent Neural Network (RNN-LSTM) dengan Optimasi Adaptive Moment Estimation,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 4, pp. 806–815, Aug. 2023, doi: 10.47065/josyc.v4i4.4014.
W. Hastomo, A. Satyo, B. Karno, N. Kalbuana, E. Nisfiani -4, and L. Etp -, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19,” Jurnal Edukasi dan Penelitian Informatika, vol. 7, no. 2, 2021.
S. Rifadli and R. Sari, “Implementasi Metode Weighted Moving Average (WMA) Pada Prediksi Penjualan Gas Elpiji Berbasis Website,” 2024. [Online]. Available: http://journal.aptikomkepri.org/index.php/JDDAT88JURNALDESAINDANANALISISTEKNOLOGI
B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, "ANALISIS DATA MINING DATA NETFLIX MENGGUNAKAN APLIKASI RAPID MINER," JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, Apr. 2021, doi: 10.30813/jbase.v4i1.2729.
G. Luvia and dan Arvin Lim, "PENELITIAN ANALISA STRATEGI TERHADAP NETFLIX," vol. 3, 2022.
A. Yani, Z. Azmi, D. Suherdi, S. Informasi, and S. Triguna Dharma, “Implementasi Data Mining Menganalisa Data Penjualan Menggunakan Algoritma K-Means Clustering,” JURNAL SISTEM INFORMASI TGD, vol. 2, no. 2, pp. 315–323, 2023, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsi
V. Puspaning Ramadhan, F. Yulian Pamuji, and A. History, “Jurnal Teknologi dan Manajemen Informatika Analisis Perbandingan Algoritma Forecasting dalam Prediksi Harga Saham LQ45 PT Bank Mandiri Sekuritas (BMRI) Article Info ABSTRACT,” vol. 8, pp. 39–45, 2022, [Online]. Available: http://http://jurnal.unmer.ac.id/index.php/jtmi
S. Panggabean, P. Robinson Sihombing, K. Hari Santhi Dewi, and I. Nyoman Bagus Pramartha, “Simulasi Exponential Moving Avarage dan Single Exponential Smoothing: Sebuah Perbandingan Akurasi Metode Peramalan,” Jurnal Pemikiran dan Penelitian Pendidikan Matematika (JP3M), vol. 4, no. 1, pp. 1–10, 2021.
A. Aliniy, Yuwanda Purnamasari Pasrun, and Andi Tenri Sumpala, “Prediksi Jumlah Mahasiswa Baru Fti Usn Kolaka Menggunakan Metode Single Exponential Smoothing,” SATESI: Jurnal Sains Teknologi dan Sistem Informasi, vol. 3, no. 1, pp. 20–25, Apr. 2023, doi: 10.54259/satesi.v3i1.1573.
I. Solikin and S. Hardini, “Aplikasi Forecasting Stok Barang Menggunakan Metode Weighted Moving Average (WMA) pada Metrojaya Komputer,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 2, pp. 100–105, May 2019, doi: 10.30591/jpit.v4i2.1373.
DOI: https://doi.org/10.52088/ijesty.v5i1.708
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Bima Sadewa, Safwandi, Fajriana