Clustering Agricultural Productivity by Type and Results Using K-Medoids Method in Districts North Aceh

Mutia Zahara, Wahyu Fuadi, Rini Meiyanti

Abstract


This research aims to develop a web-based application that can cluster sub-districts in North Aceh District based on the type and yield of agricultural productivity, focusing on increasing the ease of visualization and data analysis by users. The method applied in this research is K-Medoids, a clustering technique used to group sub-districts based on high, medium, and low harvest levels. The application will use data from the North Aceh District Agriculture Office, covering 2021 to 2023, including various food crops such as rice, corn, peanuts, green beans, cassava, sweet potatoes, and soybeans. This research will analyze the sub-district name, type of agriculture, year of production, planting area, and harvest area to identify clusters of sub-districts with similar agricultural yield patterns. The system is developed using the PHP programming language to facilitate implementation and data access by stakeholders. As an evaluation tool for clustering results, the Davies-Bouldin Index (DBI) is used to measure the quality of clustering results. The results of this study are expected to provide insights into agricultural productivity in North Aceh District and assist policymakers in designing more effective strategies to increase agricultural yields, especially in low-yielding sub-districts. In addition, this application also provides an interactive platform for users to analyze agrarian data quickly and efficiently.


Keywords


Clustering, Agricultural Productivity, K-Medoids, North Aceh District, Web Application.

Full Text:

PDF

References


P. Trisnawati and A. I. Purnamasari, “Penerapan Pengelompokkan Produktivitas Hasil Pertanian Menggunakan Algoritma K-Means,” Infotek J. Inform. dan Teknol., vol. 6, no. 2, pp. 249–257, 2023, doi: 10.29408/jit.v6i2.10198.

M. Martina, Z. Zuriani, H. Zahara, and R. Praza, “Analisis Tingkat Keberdayaan Petani Dalam Mengelola Usahatani di Kecamatan Banda Baro Kabupaten Aceh Utara,” J. Agribus. Community Empower., vol. 6, no. 1, pp. 1–9, 2023, doi: 10.32530/jace.v6i1.577.

H. Pohan, M. Zarlis, E. Irawan, H. Okprana, and Y. Pranayama, “Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia,” JUKI J. Komput. dan Inform., vol. 3, no. 2, pp. 97–104, 2021, doi: 10.53842/juki.v3i2.69.

D. Riyan Rizaldi, A. Doyan, Z. Fatimah, M. Zaenudin, and M. Zaini, “Strategies to Improve Teacher Ability in Using The Madrasah E-Learning Application During the COVID-19 Pandemic,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 2, 2021, doi: 10.52088/ijesty.v1i2.47.

E. Purnamasari, “Prediksi Perkembangan Nilai Impor Komoditas Utama,” J. Inf. dan Teknol. Vol., vol. 5, no. 1, pp. 165–172, 2023, doi: 10.37034/jidt.v5i1.271.

E. Syafaqoh, “Pengelompokan Provinsi Di Indonesia Berdasarkan Luas Panen, Produksi, Dan Produktivitas Padi Menggunakan Algoritma K-Medoid,” Fak. Sains dan Teknol. PGRI Kanjuruhan Malang, vol. 5, no. 3, p. 2023, 2023.

D. S. M. Simanjuntak, I. Gunawan, S. Sumarno, P. Poningsih, and I. P. Sari, “Penerapan Algoritma K-Medoids Untuk Pengelompokkan Pengangguran Umur 25 tahun Keatas Di Sumatera Utara,” J. Krisnadana, vol. 2, no. 2, 2023, doi: 10.58982/krisnadana.v2i2.264.

N. Muhammad Akbar, F. Prasetyo Eka Putra, K. Zulfana Imam, and M. Umar Mansyur, “Analisis Kinerja dan Interopabilitas STB Sebagai Server Penilaian Akhir Tahun,” J. Inf. dan Teknol., vol. 5, no. 2, pp. 91–96, 2023, doi: 10.37034/jidt.v5i2.365.

N. L. W. S. R. Ginantra et al., Data Mining dan Penerapan Algoritma. 2021.

Z. Nabila, A. R. Isnain, Permata, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021.

A. H. Fauzan Prasetyo Eka Putra, Selly Mellyana Dewi, Maugfiroh, “Privasi dan Keamanan Penerapan IoT Dalam Kehidupan Sehari-Hari : Tantangan dan Implikasi,” J. Sistim Inf. dan Teknol., vol. 5, no. 2, pp. 26–32, 2023, doi: 10.37034/jsisfotek.v5i1.232.

F. Rahmawati and N. Merlina, “Metode Data Mining Terhadap Data Penjualan Sparepart Mesin Fotocopy Menggunakan Algoritma Apriori,” PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., vol. 6, no. 1, pp. 9–20, 2018, doi: 10.33558/piksel.v6i1.1390.

R. Rahim et al., “Pseudo-prime number simulation and its application for security purpose,” in MATEC Web of Conferences, 2018. doi: 10.1051/matecconf/201819703005.

F. Fajriana, “Analisis Algoritma K-Medoids pada Sistem Klasterisasi Produksi Perikanan Tangkap Kabupaten Aceh Utara,” J. Edukasi dan Penelit. Inform., vol. 7, no. 2, p. 263, 2021, doi: 10.26418/jp.v7i2.47795.

W. Febriani, G. W. Nurcahyo, and S. Sumijan, “Diagnosa Penyakit Rubella Menggunakan Metode Fuzzy Tsukamoto,” J. Sistim Inf. dan Teknol., 2019, doi: 10.35134/jsisfotek.v1i3.4.

H. Ningrum, E. Irawan, and M. R. Lubis, “Implementasi Metode K-Medoids Clustering Dalam Pengelompokan Data Penyakit Alergi Pada Anak,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, p. 130, 2021, doi: 10.30645/jurasik.v6i1.277.

F. N. Illahi Dinati, F. R. Edy Santosa, and R. Durrotun Nasihien, “The Impact of Tower Base Transceiver Station (BTS) Infrastructure Development on the Resident Environment,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 2, 2021, doi: 10.52088/ijesty.v1i2.48.

R. Y. Widya Baskara, A. Wahyuni, and F. Hardanignrum, “The Effect Of Road Narrowing On The Traffic Characteristics,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 2, 2021, doi: 10.52088/ijesty.v1i2.54.

S. Bahri and D. M. Midyanti, “Penerapan Metode K-Medoids untuk Pengelompokan Mahasiswa Berpotensi Drop Out,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 1, pp. 165–172, 2023, doi: 10.25126/jtiik.20231016643.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” J. Sains dan Manaj., vol. 9, no. 1, p. 96, 2021.

M. Sholeh and K. Aeni, “Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 1, p. 56, 2023, doi: 10.30998/string.v8i1.16388.

F. Fathurrahman, S. Harini, and R. Kusumawati, “Evaluasi Clustering K-Means Dan K-Medoid Pada Persebaran Covid-19 Di Indonesia Dengan Metode Davies-Bouldin Index (Dbi),” J. Mnemon., vol. 6, no. 2, pp. 117–128, 2023, doi: 10.36040/mnemonic.v6i2.6642.

Nanda Shalsadilla, Shantika Martha, and Hendra Perdana, “Penentuan Jumlah Cluster Optimum Menggunakan Davies Bouldin Index dalam Pengelompokan Wilayah Kemiskinan di Indonesia,” Stat. J. Theor. Stat. Its Appl., vol. 23, no. 1, pp. 63–72, 2023, doi: 10.29313/statistika.v23i1.1743.




DOI: https://doi.org/10.52088/ijesty.v5i1.699

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mutia Zahara, Wahyu Fuadi, Rini Meiyanti

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674