Expert System for Diagnosing Dengue Fever with Comparison of Naïve Bayes and Dempster Shafer Methods

Neli Susanti, Nurdin Nurdin, Yesy Afrillia

Abstract


An expert system for diagnosing dengue fever (DF) using a comparison of the Naive Bayes and Dempster Shafer methods aims to provide a solution to assist medical personnel in diagnosing this disease. Dengue fever is a disease caused by the dengue virus infection through the bite of Aedes mosquitoes. It has symptoms similar to other diseases and requires rapid and accurate diagnosis. The Naive Bayes and Dempster Shafer methods were chosen because both have different approaches to handling uncertainty and imprecise information. The Naive Bayes method is a probability-based classification that assumes independence between features. Meanwhile, Dempster Shafer is an approach to handling uncertainty. Therefore, comparing Naive Bayes and Dempster Shafer allows for classification with structured and fairly straightforward data, offering accuracy and flexibility in dealing with uncertainty. Applying this expert system with these methods can help in the faster and more accurate diagnosis of DF and provide better recommendations in situations where the available data is incomplete or ambiguous. From the test data calculations, the two methods show that the Naive Bayes method has a higher percentage value of 93%, while Dempster Shafer has 86%.


Keywords


Expert System, Diagnosis, Comparison, Naive Bayes, Dempster Shafer

Full Text:

PDF

References


J. Ariawan, S. Wahyuni, and D. Mamu, M., Pelleng, F. A., & Kelles, “Pengembangan Aplikasi Web Untuk Pengajuan Cuti Pegawai Secara Online,” Algoritma, vol. 5, no. August, p. 32, 2019.

Sukohar, “Demam Berdarah Dengue (DBD),” Medula, vol. 2, no. 2, pp. 1–15, 2014.

S. Miftaviana, “Sistem Pakar Diagnosa Penyakit Pada Paru - Paru Dengan Metode Case Based Reasoning (CBR) Berbasis Web,” Univ. Islam Riau, 2022.

N. Nurdin, E. Susanti, H. A.-K. Aidilof, and D. Priyanto, “Comparison of Naive Bayes and Dempster Shafer Methods in Expert System for Early Diagnosis of COVID-19,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 1, pp. 215–228, 2022, doi: 10.30812/matrik.v22i1.2280.

J. S. Pasaribu, “Development of a Web Based Inventory Information System,” Int. J. Eng. Sci. InformationTechnology, vol. 1, no. 2, pp. 24–31, 2021, doi: 10.52088/ijesty.v1i2.51.

A. T. Sitanggang and Y. Desnelita, “Tingkat Pemahaman Mahasiswa antar Pembelajaran Online dan Offline dalam Masa Pandemi Covid-19 Menggunakan Metode Forward Chaining,” J. Inf. dan Teknol., vol. 4, no. 1, pp. 64–69, 2022, doi: 10.37034/jidt.v4i1.187.

K. Solecha, J.- Jefi, H. Hendri, E. Badri, and A. Haidir, “Sistem Pakar Untuk Mendeteksi Kerusakan Komputer Dengan Metode Forward Chaining,” J. Infortech, vol. 3, no. 2, pp. 164–170, 2021, doi: 10.31294/infortech.v3i2.11801.

Fira Kusuma Wardana, L. D. Bakti, and K. Nurwijayanti, “Sistem Pakar Diagnosa Penyakit Pada Kucing Dengan Metode Certainty Factor Berbasis Web,” J. Kecerdasan Buatan dan Teknol. Inf., vol. 2, no. 1, pp. 20–31, 2023, doi: 10.69916/jkbti.v2i1.14.

P. Barbaro et al., “Safety Data Sheet,” J. Am. Chem. Soc., 2009, doi: 10.1021/jm701266y.

R. Ennis et al., “J p t e o,” J. Clean. Prod., 2018.

R. Kusumaningrum, T. A. Indihatmoko, S. R. Juwita, A. F. Hanifah, K. Khadijah, and B. Surarso, “Benchmarking of multi-class algorithms for classifying documents related to stunting,” Appl. Sci., vol. 10, no. 23, pp. 1–13, 2020, doi: 10.3390/app10238621.

S. Palaniappan, A. Mustapha, C. F. Mohd Foozy, and R. Atan, “Customer Profiling using Classification Approach for Bank Telemarketing,” JOIV Int. J. Informatics Vis., 2018, doi: 10.30630/joiv.1.4-2.68.

D. Abdullah, Hartono, and C. I. Erliana, “Hesitant fuzzy-stochastic data envelopment analysis (Hf-sdea) model for benchmarking,” Int. J. Informatics Vis., vol. 5, no. 1, 2021, doi: 10.30630/joiv.5.1.405.

N. Muhammad Akbar, F. Prasetyo Eka Putra, K. Zulfana Imam, and M. Umar Mansyur, “Analisis Kinerja dan Interopabilitas STB Sebagai Server Penilaian Akhir Tahun,” J. Inf. dan Teknol., vol. 5, no. 2, pp. 91–96, 2023, doi: 10.37034/jidt.v5i2.365.

R. Amalia, “Penerapan Data Mining Untuk Memprediksi Hasil Kelulusan Siswa menggunakan Metode Naïve Bayes,” J. Inform. dan Sist. Inf., vol. 6, no. 1, pp. 33–42, 2020.

R. A. Pamungkas and L. D. Farida, “Implementasi Dempster Shafer Untuk Deteksi Dini Gizi Buruk Pada Balita,” Pseudocode, vol. 10, no. 1, pp. 21–29, Apr. 2023, doi: 10.33369/PSEUDOCODE.10.1.21-28.

A. Maseleno, M. M. Hasan, M. Muslihudin, and T. Susilowati, “Finding kicking range of sepak takraw game: Fuzzy logic and Dempster-Shafer theory approach,” Indones. J. Electr. Eng. Comput. Sci., 2016, doi: 10.11591/ijeecs.v2.i1.pp187-193.

S. R. Andria, B. S. Ginting, and M. Alfisyahri, “Sistem Pakar Diagnosa Penyakit Chelpagia Menggunakan Metode Dempster Shafer,” J. Tek. Komputer, Agroteknologi Dan Sains, vol. 1, no. 1, pp. 133–139, 2022, doi: 10.56248/marostek.v1i1.20.




DOI: https://doi.org/10.52088/ijesty.v5i1.691

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Neli Susanti, Nurdin, Yesi Afrillia

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674