Comparative Analysis of K-Means and K-Medoids to Determine Study Programs
Abstract
Education is the main foundation for the advancement of civilization. A high level of education in society is directly proportional to the progress of that civilization. Higher education plays an important role in shaping quality human resources and contributing to community and national development. In today’s era of information and technology, data processing and analysis are key to understanding the development of study programs in higher education institutions. Clustering techniques are used to identify patterns and relationships in large and complex datasets, which are crucial in determining study programs at educational institutions. This research compares two popular clustering methods, K-Means and K-Medoids to determine study programs. The data used consists of odd semester grades of 87 students in the third-years of high school with 5 variables. The information of clusters is based on the minimum academic criteria of 18 study programs representing 7 faculties in Malikussaleh University and grouped into 5 clusters. The evaluation of clusters is conducted using the Davies-Bouldin Index (DBI). The result of the study indicate that K-Means algorithm has 5 clusters with cluster members of 31, 5, 13, 26 and 17, and a DBI value of 1,19010. Meanwhile, the K-Medoids algorithm has 5 clusters with cluster members of 33, 15, 17, 17 and 5, and a DBI value of 1,27833. Based on the DBI value, the K-Means algorithm demonstrates better cluster quality compared to the K-Medoids algorithm.
Keywords
Full Text:
PDFReferences
S. Anwar, T. Suprapti, G. Dwilestari, I. Ali, P. Studi Rekayasa Perangkat Lunak Jln Perjuangan No, and B. Kesambi Kota Cirebon, “Pengelompokkan HAsil Belajar Siswa Dengan Metode Clustering K-Means Program Studi Sistem Informasi Jln Perjuangan No 10B Kesambi Kota Cirebon 4),” J. Sist. Inf. dan Teknol. Informasi), vol. 4, no. 2, pp. 60–72, 2022.
Rahmawati and T. Arifin, “Penerapan Algoritma K-Means Untuk Pengelompokan Siswa Lolos Snmptn Di Sman 8 Bandung,” J. Responsif Ris. Sains dan Inform., vol. 2, no. 2, pp. 184–190, 2020, doi: 10.51977/jti.v2i2.271.
J. Faran and R. T. Aldisa, “Perbandingan Algoritma K-Means dan K-Medoids Dalam Pengelompokan Kelas Untuk Mahasiswa Baru Program Magister,” J. Inf. Syst. Res., vol. 5, no. 2, pp. 509–519, 2024, doi: 10.47065/josh.v5i2.4753.
Nurdin, Taufiq, Fajriana, and M. Z. Ulhaq, “Mapping System Model and Clustering of Fishery Products using K-Means Algorithm with Web GIS Approach,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 3, pp. 738–749, 2023.
D. Abdullah, S. Susilo, A. S. Ahmar, R. Rusli, and R. Hidayat, “The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data,” Qual. Quant., vol. 56, no. 3, pp. 1283–1291, 2022, doi: 10.1007/s11135-021-01176-w.
Y. Prihati, Suwarno, and A. Dharmawan, “Implementasi Algoritma K-Means Untuk Pemetaan Prestasi Akademik Siswa Disekolah Dasar Terang Bagi Bangsa Pati,” Kinabalu, vol. 11, no. 2, pp. 50–57, 2019.
N. Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 183–188, 2020, doi: 10.31294/p.v22i2.8808.
W. Lestari, “Clustering Data Mahasiswa Menggunakan Algoritma K-Means Untuk Menunjang Strategi Promosi (Studi Kasus : STMIK Bina Bangsa Kendari),” Simkom, vol. 4, no. 2, pp. 35–48, 2019, doi: 10.51717/simkom.v4i2.37.
Yulia and M. Silalahi, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” Indones. J. Comput. Sci., vol. 10, no. 1, 2021.
S. W. Nengsih, I. Alfian, D. Aji, and S. Anwar, “Analisis Pengelompokan Penentuan Jurusan Siswa Sma Menggunakan Metode K-Means Clustering,” J. Ilm. Betrik (Besemah Teknol. Inf. dan Komputer), no. 03, pp. 242–248, 2021.
Y. Renatalia, M. Asfi, and R. Fahrudin, “Program Studi Menggunakan Metode,” vol. 10, no. 2, pp. 148–160, 2020.
T. Amalina, D. Bima, A. Pramana, and B. N. Sari, “Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food,” J. Ilm. Wahana Pendidik., vol. 8, no. 15, pp. 574–583, 2022, [Online]. Available: https://doi.org/10.5281/zenodo.7052276
D. Abdullah and C. I. Erliana, “Model of Ict Goods Inventory Clustering Application Using K-Means Method,” ?lkö?retim Online, vol. 20, no. 1, pp. 1128–1132, 2021, doi: 10.17051/ilkonline.2021.01.116.
J. Hutagalung, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 606–620, 2022, doi: 10.35957/jatisi.v9i1.1516.
M. Faisal, N. Nurdin, F. Fajriana, and Z. Fitri, “Information and Communication Technology Competencies Clustering For Students For Vocational High School Students Using K-Means Clustering Algorithm,” Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 3, pp. 111–120, 2022, doi: 10.52088/ijesty.v2i3.318.
W. Kurniawan, A. Rifai, ; Windu Gata, and D. Gunawan, “Analisis Algoritma K-Medoids Clustering Dalam Menentukan Pemesanan Hotel,” Swabumi (Suara Wawasan Sukabumi) Ilmu Komputer, Manajemen, dan Sos., vol. 8, no. 2, pp. 182–187, 2020, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/swabumi/article/view/9393
B. Wira, A. E. Budianto, and A. S. Wiguna, “Implementasi Metode K-Medoids Clustering Untuk Mengetahui Pola Pemilihan Program Studi Mahasiwa Baru Tahun 2018 Di Universitas Kanjuruhan Malang,” RAINSTEK J. Terap. Sains Teknol., vol. 1, no. 3, pp. 53–68, 2019, doi: 10.21067/jtst.v1i3.3046.
B. Riyanto, “Penerapan Algoritma K-Medoids Clustering Untuk Pengelompokkan Penyebaran Diare Di Kota Medan (Studi Kasus: Kantor Dinas Kesehatan Kota Medan),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 562–568, 2019, doi: 10.30865/komik.v3i1.1659.
G. B. Kaligis and S. Yulianto, “Analisa Perbandingan Algoritma K-Means, K-Medoids, Dan X-Means Untuk Pengelompokkan Kinerja Pegawai,” IT-Explore J. Penerapan Teknol. Inf. dan Komun., vol. 1, no. 3, pp. 179–193, 2022, doi: 10.24246/itexplore.v1i3.2022.pp179-193.
M. Herviany, S. Putri Delima, T. Nurhidayah, and K. Kasini, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor Pada Provinsi Jawa Barat,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 34–40, 2021, doi: 10.57152/malcom.v1i1.60.
F. Fathurrahman, S. Harini, and R. Kusumawati, “Evaluasi Clustering K-Means Dan K-Medoid Pada Persebaran Covid-19 Di Indonesia Dengan Metode Davies-Bouldin Index (Dbi),” J. Mnemon., vol. 6, no. 2, pp. 117–128, 2023, doi: 10.36040/mnemonic.v6i2.6642.
DOI: https://doi.org/10.52088/ijesty.v5i1.673
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Salamah Salamah, Dahlan Abdullah, Nurdin Nurdin