Prediction of Plantation Crop Production Based on Environment Using Linear Regression and Single Exponential Smoothing Methods

Marlina Sari, Dahlan Abdullah, Maryana Maryana

Abstract


Indonesia, as an agrarian country, heavily relies on the plantation sector as a key driver of its national economy. One significant region contributing to this sector is West Aceh Regency, which consists of 12 districts and is renowned for cultivating five main plantation commodities: oil palm, coconut, rubber, coffee, and cocoa. This research aims to develop a plantation crop production prediction system to support efficient resource planning and management in this sector. The system employs Linear Regression and Single Exponential Smoothing (SES) with a smoothing constant (alpha) of 0.2. The system's primary objective is to analyze historical production data at the district level and generate reliable predictions of future production trends. Linear Regression models the relationship between time (independent variable) and production volume (dependent variable), effectively capturing long-term trends. SES complements this by addressing short-term fluctuations, applying a weighted average where recent data carries greater importance. Prediction accuracy is evaluated using the Mean Absolute Percentage Error (MAPE). Findings reveal that Linear Regression consistently achieves high accuracy, with MAPE values below 20% in most districts, particularly for coffee and cocoa. Conversely, SES demonstrates varying results, performing well in some cases, such as coconut production in Arongan Lambalek (MAPE < 20%), but poorly in others, such as oil palm in Bubon (MAPE = 91.06%). In comparison, Linear Regression in Bubon yields a more moderate MAPE of 35.16%. The system is integrated into a user-friendly, web-based platform, accessible to stakeholders like farmers, policymakers, and government agencies. By offering actionable insights into production trends, it aids in mitigating risks, optimizing resource allocation, and enhancing plantation management efficiency. This research underscores the importance of predictive analytics in agricultural planning, with potential applications in other agrarian regions.

Keywords


Production Prediction, Plantation Crop, Linear Regression, Single Exponential Smoothing, MAPE

Full Text:

PDF

References


D. Abdullah, M. Farhan Aulia Barus, and M. Riansyah, “Forecasting Palawija Harvest Results In North Aceh Using Multiple Linear Regression Method,” Int. J. Artif. Intelegence Res., vol. 6, no. 1, pp. 2579–7298, 2022, doi: 10.29099/ijair.v6i1.425.

S. W. Nur Aulia and P. K. Intan, “Klasterisasi Produksi Tanaman Perkebunan di Provinsi Jawa Timur Menggunakan Algoritma Fuzzy C-Means,” J. Sains Mat. dan Stat., vol. 9, no. 2, p. 119, Aug. 2023, doi: 10.24014/jsms.v9i2.22735.

N. Murosikhoh, “Kontribusi Sektor Perkebunan Terhadap Perekonomian Daerah,” 2021.

I. G. Dharma Utamayasa, “Efect Physical Activity and Nutrition During The Covid-19 Pandemic,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 1, 2021, doi: 10.52088/ijesty.v1i1.58.

R. Atika, A. Habibi, and E. Ekawati, “Pengaruh Subsektor Pertanian Terhadap Pertumbuhan Ekonomi Dengan Gapoktan Sebagai Variabel Moderasi Dalam Perspektif Ekonomi Islam,” JIIP (Jurnal Ilm. Ilmu Pendidikan), vol. 7, no. 2, 2024, doi: https://doi.org/10.54371/jiip.v7i2.3923.

D. Riyan Rizaldi, A. Doyan, Z. Fatimah, M. Zaenudin, and M. Zaini, “Strategies to Improve Teacher Ability in Using The Madrasah E-Learning Application During the COVID-19 Pandemic,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 2, 2021, doi: 10.52088/ijesty.v1i2.47.

N. Muhammad Akbar, F. Prasetyo Eka Putra, K. Zulfana Imam, and M. Umar Mansyur, “Analisis Kinerja dan Interopabilitas STB Sebagai Server Penilaian Akhir Tahun,” J. Inf. dan Teknol., vol. 5, no. 2, pp. 91–96, 2023, doi: 10.37034/jidt.v5i2.365.

W. Febriani, G. W. Nurcahyo, and S. Sumijan, “Diagnosa Penyakit Rubella Menggunakan Metode Fuzzy Tsukamoto,” J. Sistim Inf. dan Teknol., 2019, doi: 10.35134/jsisfotek.v1i3.4.

N. Nurdin, F. Fajriana, M. Maryana, and A. Zanati, “Information System for Predicting Fisheries Outcomes Using Regression Algorithm Multiple Linear,” J. INFORMATICS Telecommun. Eng., vol. 5, no. 2, pp. 247–258, Jan. 2022, doi: 10.31289/jite.v5i2.6023.

J. S. Pasaribu, “Development of a Web Based Inventory Information System,” Int. J. Eng. Sci. InformationTechnology, vol. 1, no. 2, pp. 24–31, 2021, doi: 10.52088/ijesty.v1i2.51.

R. Rahim et al., “Pseudo-prime number simulation and its application for security purpose,” in MATEC Web of Conferences, 2018. doi: 10.1051/matecconf/201819703005.

R. Novanda Putra, A. Aziz, and A. Zaini, “Implementasi Metode Simple Regresi Linear dan Single Exponential Smoothing untuk Memprediksi Produksi Padi Jawa Timur,” Fak. Sains dan Teknol. PGRI Kanjuruhan Malang, vol. 5, no. 2, p. 2023, 2023, doi: 10.21067/jtst.v5i2.8545.

H. Husdi and H. Dalai, “Penerapan Metode Regresi Linear Untuk Prediksi Jumlah Bahan Baku Produksi Selai Bilfagi,” J. Inform., vol. 10, no. 2, pp. 129–135, Oct. 2023, doi: 10.31294/inf.v10i2.14129.

N. L. Salsavira, D. E. Yuliawati, and T. Surabaya, “Peramalan Supply Bahan Baku Menggunakan Metode Regresi Linier dan Exponential Smoothing,” J. Nusant. Eng., vol. 06, 2023.

C. I. Ilhamti and R. Vikaliana, “Analisis Peramalan Permintaan Crude Palm Oil (CPO) Menggunakan Metode Single Exponential Smoothing, Moving Average dan Holt Winter’s di Perusahaan Perkebunan Sawit,” J. Rekayasa Sist. dan Ind., vol. 11, no. 1, p. 1, 2024, doi: 10.25124/jrsi.v11i01.733.

T. N. Putri, A. Yordan, and D. H. Lamkaruna, “Peramalan Penerimaan Mahasiswa Baru Universitas Samudra Menggunakan Metode Regresi Linear Sederhana,” J. Teknol. Inform., vol. 2, no. 1, pp. 2654–2617, 2019.

M. Yusuf Alwy, Herman, T. H, A. Abraham, and H. Rukmana, “Analisis Regresi Linier Sederhana dan Berganda Beserta Penerapannya,” J. Educ., vol. 06, no. 02, pp. 13331–13344, 2024.

D. R. Deni, M. A. Barata, and Sahri, “Forecasting Metode Single Exponential Smoothing Dalam Meramalkan Penjualan Barang,” J. Inform. Polinema, vol. 9, no. 4, pp. 435–444, 2023, doi: 10.33795/jip.v9i4.1405.

F. Ginting, E. Buulolo, and E. R. Siagian, “Implementasi Algoritma Regresi Linear Sederhana Dalam Memprediksi Besaran Pendapatan Daerah (Studi Kasus: Dinas Pendapatan Kab. Deli Serdang),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, Nov. 2019, doi: 10.30865/komik.v3i1.1602.

S. Panjaitan, D. A. Putri, and D. A. Muthia, “Implementasi Data Mining Pada Data Transaksi Toko Lozitech Utama Menggunakan Algoritma Apriori,” J. Tek., vol. 17, no. 2, pp. 481–492, 2023.

S. P. Fauzani and D. Rahmi, “Penerapan Metode ARIMA Dalam Peramalan Harga Produksi Karet di Provinsi Riau,” J. Teknol. dan Manaj. Ind. Terap., vol. 2, no. 4, pp. 269–277, 2023, doi: https://doi.org/10.55826/tmit.v2i4.283.

G. N. Ayuni and D. Fitrianah, “Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ,” J. Telemat., vol. 14, no. 2, 2019, doi: https://doi.org/10.61769/jurtel.v14i2.321.

W. N. Putri, M. H. P. Swari, and R. Mumpuni, “Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Suku Cadang,” JINTEKS (Jurnal Inform. Teknol. dan Sains), vol. 5, no. 4, 2023.

P. S. Suranto and R. Fitriani, “Perbandingan Metode Single Exponential Smoothing Dan Regresi Linear Dalam Menentukan Forecasting Permintaan Produk,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 3, 2024.

N. L. W. A. Della, R. A. N. Diaz, and K. D. P. Novianti, “Penerapan Metode Regresi Linier untuk Memprediksi Permohonan ITAS,” J. Eksplora Inform., vol. 10, no. 2, pp. 92–100, Mar. 2021, doi: 10.30864/eksplora.v10i2.380.

F. Ahmad, “Penentuan Metode Peramalan Pada Produksi Part New Granada Bowl ST di PT.X,” JISI J. Integr. Sist. Ind., vol. 7, no. 1, p. 31, May 2020, doi: 10.24853/jisi.7.1.31-39.

C. Rahayu, D. Abdullah, and Z. Yunizar, “Implementation Of Long Short Term Memory (LSTM) Algorithm For Predicting Stock Price Movements Of LQ45 Index (Case Study: BBCA Stock Price),” Bull. Eng. Sci. Technol. Ind., vol. 1, no. 2, 2023.




DOI: https://doi.org/10.52088/ijesty.v5i1.669

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Marlina Sari, Dahlan Abdullah, Maryana

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674