Performance Analysis of SVM and Linear Regression for Predicting Tourist Visits in North Sumatera

Andriyan Ginting, Nurdin Nurdin, Cut Agusniar

Abstract


Indonesia, an archipelago rich in cultural diversity, historical heritage, and stunning natural scenery, offers an extraordinary travel experience to visitors who make this country their vacation destination. Tourism in Indonesia plays an essential role in the domestic economy, contributing to Gross Domestic Product. With its abundant natural and cultural resources, North Sumatra has long been recognized as an attractive destination for foreign tourists. However, the tourism sector faces significant challenges related to fluctuations in the number of visits, mainly due to the impact of the COVID-19 pandemic, which has disrupted global travel patterns and caused considerable uncertainty in tourism forecasting. Therefore, predicting the number of tourist visits becomes crucial for effectively planning and managing tourist destinations. This research aims to compare the performance of two forecasting algorithms, SVM and linear regression, in predicting foreign tourist visits in North Sumatra using historical data from 2019 to 2023. The dataset was subjected to a preprocessing phase to ensure data cleanliness and consistency, focusing on key variables such as seasonal trends, external factors, and market dynamics. Both models were evaluated based on two commonly used accuracy metrics, MAPE and RMSE, to assess how well the models could predict actual tourist arrivals. The results of the study indicate that Linear Regression outperforms SVM in terms of prediction accuracy, with a MAPE of 42.40% and an RMSE of 6735.6, compared to SVM with a MAPE of 46.65% and an RMSE of 8020.42. These findings provide valuable insights for local government authorities and tourism industry stakeholders to enhance destination planning, resource allocation, and strategies to attract more foreign tourists in the post-pandemic era.


Keywords


Linear Regression, Prediction, Support Vector Machine, Tourism

Full Text:

PDF

References


G. Pedro and Gomez. Pesando, “Travel & Tourism Development Index 2021 Rebuilding for a Sustainable and Resilient Future M A Y 2 0 2 2,” 2022.

I. M. Hasibuan, S. Mutthaqin, R. Erianto, and I. Harahap, “Kontribusi Sektor Pariwisata Terhadap Perekonomian Nasional,” Jurnal Masharif al-Syariah: Jurnal Ekonomi dan Perbankan Syariah, 2023, doi: 10.30651/jms.v8i2.19280.

S. U. BPS, Provinsi Sumatera Utara Dalam Angka 2022. 2023.

H. Mukhtar, R. Muhammad, T. Reny Medikawati, and Yoze Rizki, “Peramalan Kedatangan Wisatawan Mancanegara Ke Indonesia Menurut Kebangsaan Perbulannya Menggunakan Metode Multilayer Perceptron,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 2, no. 2, pp. 113–119, Dec. 2021, doi: 10.37859/coscitech.v2i2.3324.

N. Nurdin, Rizki Mela, and Maryana, “Analisa Data Mining Dalam Memprediksi Masyarakat Kurang Mampu Menggunakan Metode K-Nearest Neighbor,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4131.

M. Maulita and N. Nurdin, “Pendekatan Data Mining Untuk Analisa Curah Hujan Menggunakan Metode Regresi Linear Berganda (Studi Kasus: Kabupaten Aceh Utara),” 2023. doi: https://doi.org/10.36080/idealis.v6i2.3034.

B. A. Manurung, A. Gea, A. P. Silalahi, and N. Samosir, “Penerapan Algoritma Regresi Linear Untuk Memprediksi Jumlah Wisatawan,” 2024. [Online]. Available: https://ejurnal.methodist.ac.id/index.php/methosisfo

Fahirah and S. Wati, “Comparison between Linear Regression, Support Vector Machines, and Neural Networks in Forecasting the Number of Foreign Tourist Visits to Indonesia,” International Journal of Scientific and Research Publications (IJSRP), vol. 11, no. 5, pp. 262–268, Apr. 2021, doi: 10.29322/ijsrp.11.05.2021.p11330.

B. Karomah, “Aplikasi Metode Regresi Linier Sederhana Untuk Memprediksi Kedatangan Jumlah Wisatawan Mancanegara Pasca Pandemi COVID 19,” Mathematics & Applications Journal, 2023, doi: https://doi.org/10.15548/map.v4i2.4933.

D. Rahmawati, T. Kristanto, B. F. Setya Pratama, and D. B. Abiansa, “Prediksi Pelaku Perjalanan Luar Negeri Di Masa Pandemi COVID-19 Menggunakan Metode Regresi Linier Sederhana,” Journal of Information System Research (JOSH), vol. 3, no. 3, pp. 338–343, Apr. 2022, doi: 10.47065/josh.v3i3.1507.

V. N. Wijayaningrum and N. N. Putriwijaya, “Support Vector Regression Untuk Memprediksi Jumlah Kunjungan Wisatawan Mancanegara Di PULAU Bali,” Prosiding SENTIA, 2020, [Online]. Available: www.bps.go.id

I. A. Tarigan, I. P. A. Bayupati, and G. A. A. Putri, “Comparison of support vector machine and backpropagation models in forecasting the number of foreign tourists in Bali province,” Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 2, pp. 90–95, Apr. 2021, doi: 10.14710/jtsiskom.2021.13847.

W. R. U. Fadilah, D. Agfiannisa, and Y. Azhar, “Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine,” Fountain of Informatics Journal, vol. 5, no. 2, p. 45, Sep. 2020, doi: 10.21111/fij.v5i2.4449.

A. Karim, “Perbandingan Prediksi Kemiskinan di Indonesia Menggunakan Support Vector Machine (SVM) dengan Regresi Linear,” Jurnal Sains Matematika dan Statistika, vol. 6, no. 1, p. 107, Jan. 2020, doi: 10.24014/jsms.v6i1.9259.

M. Sari, D. Agustini, M. Farida, U. Islam Kalimantan Muhammad Arsyad Al Banjari Banjarmasin, and K. Selatan, “Model Prediksi Kunjungan Wisata: Mengoptimalkan Arsitektur Algoritma Backpropagation untuk Prediksi Kunjungan Wisata Mancanegara (ASIA),” Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 5, no. 1, pp. 240–254, 2024, doi: https://doi.org/10.30645/kesatria.v5i1.332.g329.

V. Jessfry and M. Siddik, “Penerapan Data Mining Menggunakan Algoritma Apriori Dalam Membangun Sistem Persediaan Barang,” Journal Of Information Systems And Informatics Engineering, vol. 8, no. 1, pp. 187–199, 2024.

A. Prasetyo, N. Nurdin, and H. A. K. Aidilof, “Comparison of Triple Exponential Smoothing and ARIMA in Predicting Cryptocurrency Prices,” International Journal of Engineering, Science and Information Technology, vol. 4, no. 4, pp. 63–71, Oct. 2024, doi: 10.52088/ijesty.v4i4.577.

N. Nurdin, F. Fajriana, M. Maryana, and A. Zanati, “Information System for Predicting Fisheries Outcomes Using Regression Algorithm Multiple Linear,” Journal of Informatics and Telecommunication Engineering, vol. 5, no. 2, pp. 247–258, Jan. 2022, doi: 10.31289/jite.v5i2.6023.

A. Anggara, N. Nurdin, and R. Meiyanti, “Sentiment Analysis of the MK Decision Trial of the Result of the 2024 President and Vice President General Election on Social Media X Using the Support Vector Machine Method,” International Journal of Engineering, Science and Information Technology, vol. 4, no. 4, pp. 125–134, Oct. 2024, doi: 10.52088/ijesty.v4i4.591.

V. A. Zahrah, N. Nurdin, and R. Risawandi, “Sentiment Analysis of Google Maps User Reviews on the Play Store Using Support Vector Machine and Latent Dirichlet Allocation Topic Modeling,” International Journal of Engineering, Science and Information Technology, vol. 4, no. 4, pp. 87–100, Oct. 2024, doi: 10.52088/ijesty.v4i4.580.

W. Andriani, Gunawan, and A. E. Prayoga, “Prediksi Nilai Emas Menggunakan Algoritma Regresi Linear,” Jurnal Ilmiah Informatika Komputer, vol. 28, no. 1, pp. 27–35, 2023, doi: 10.35760/ik.2023.v28i1.8096.




DOI: https://doi.org/10.52088/ijesty.v5i1.667

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Andriyan Ginting, Nurdin Nurdin, Cut Agusniar

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674