News Popularity Prediction in West Sumatera Using Autoregressive Integrated Moving Average
Abstract
The increasing public interest in reading online news is undoubtedly a challenge for news portals as online news providers. Therefore, this research was conducted to predict news popularity in West Sumatra through the FajarSumbar.com news portal using the Autoregressive Integrated Moving Average (ARIMA) model. This research aims to develop a forecasting model that can assist in estimating the popularity of each news category so that news portals can devise more effective content strategies. The data used in this study includes the number of monthly news impressions from March 2021 to June 2024, which are grouped into various categories such as Religion & Culture, Industrial Economics, Criminal Law, etc. Using the ARIMA method, which can handle time series data and overcome data non-stationarity problems through differencing and the use of grid search in optimization to find the best parameters based on the lowest evaluation metric. The results show that the ARIMA model can provide reasonably accurate predictions, although the level of accuracy varies between categories. The Mean Absolute Percentage Error (MAPE) values obtained are as follows: Religion & Culture 26%, Industrial Economy 29%, Criminal Law 29%, Health 40%, Sports 38%, Tourism & Entertainment 26%, Education 27%, Government Politics 31%, Social Environment 27%, and Technology 51%. The Technology and Health news categories show higher error rates than others, while Religion & Culture and Tourism & Entertainment have better accuracy rates. Thus, the ARIMA model can be used to predict future trends in news popularity, helping editors plan content strategies that are more relevant and interesting to readers. However, improvements are needed for news categories that have high variability.
Keywords
Full Text:
PDFReferences
D. Kusuma Habibie and M. Administrasi Publik Universitas Gadjah Mada Jl Sardjito, “DWI FUNGSI MEDIA MASSA,” 2018.
S. Wahyuni, “PERBANDINGAN EFEKTIVITAS TEMU KEMBALI INFORMASI PADA PORTAL BERITA ONLINE DI YOGYAKARTA (HARIAN JOGJA DAN TRIBUN JOGJA).”
M. Y. Darsyah, “Peramalan Pola Data Musiman Dengan Model Winter’s & ARIMA,” 2015.
Y. Zhang and K. Lin, "Predicting and Evaluating the Online News Popularity based on Random Forest," in Journal of Physics: Conference Series, IOP Publishing Ltd, Aug. 2021. doi: 10.1088/1742-6596/1994/1/012040.
A. Rachmad Syulistyo and V. Meliana Agustin, "Predicting News Article Popularity with Multi Layer Perceptron Algorithm," 2022. [Online]. Available: https://www.kaggle.com/waseemakramkhan/the-tribune-news-articles.
S. P. Fauzani and D. Rahmi, “Penerapan Metode ARIMA Dalam Peramalan Harga Produksi Karet di Provinsi Riau,” Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT), vol. 2, no. 4, pp. 269–277, 2023.
S. Nurman, M. Nusrang, and Sudarmin, "Analysis of Rice Production Forecast in Maros District Using the Box-Jenkins Method with the ARIMA Model," ARRUS Journal of Mathematics and Applied Science, vol. 2, no. 1, pp. 36–48, Feb. 2022, doi: 10.35877/mathscience731.
I. G. I. Sudipa, R. Riana, I. N. T. A. Putra, C. P. Yanti, and M. D. W. Aristana, “Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method,” SinkrOn, vol. 8, no. 3, pp. 1883–1893, Jul. 2023, doi: 10.33395/sinkron.v8i3.12773.
L. M. Malihah and G. T. Meilania, “PERBANDINGAN MODEL PERAMALAN JUMLAH PENCARI KERJA MENGGUNAKAN ARIMA DAN DOUBLE EXPONENTIAL SMOOTHING,” Jurnal Litbang Sukowati : Media Penelitian dan Pengembangan, vol. 7, no. 2, pp. 169–178, Nov. 2023, doi: 10.32630/sukowati.v7i2.441.
M. Wang et al., "Methods and Applications An Autoregressive Integrated Moving Average Model for Predicting Varicella Outbreaks-China," 2019. [Online]. Available: https://weekly.chinacdc.cn/
M. Maulita, “PENDEKATAN DATA MINING UNTUK ANALISA CURAH HUJAN MENGGUNAKAN METODE REGRESI LINEAR BERGANDA (STUDI KASUS: KABUPATEN ACEH UTARA),” 2023. [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/indexMayaMaulita|http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index|
B. D. Samudera, N. Nurdin, and H. A. K. Aidilof, "Sentiment Analysis of User Reviews on BSI Mobile and Action Mobile Applications on the Google Play Store Using Multinomial Naive Bayes Algorithm," International Journal of Engineering, Science and Information Technology, vol. 4, no. 4, pp. 101–112, Oct. 2024, doi: 10.52088/ijesty.v4i4.581.
M. Fikry, D. Hamdhana, and M. Qamal, "Data Mining for Processing of Research and Community Service by Lecturer Using Decision Tree Method".
S. Wardah, “ANALISIS PERAMALAN PENJUALAN PRODUK KERIPIK PISANG KEMASAN BUNGKUS (Studi Kasus : Home Industry Arwana Food Tembilahan),” 2016.
N. Nurdin, F. Fajriana, M. Maryana, and A. Zanati, “Information System for Predicting Fisheries Outcomes Using Regression Algorithm Multiple Linear,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 5, no. 2, pp. 247–258, Jan. 2022, doi: 10.31289/jite.v5i2.6023.
N. Luh, W. Sri, R. Ginantra, I. Bagus, and G. Anandita, “Penerapan Metode Single Exponential Smoothing Dalam Peramalan Penjualan Barang,” 2019. [Online]. Available: http://tunasbangsa.ac.id/ejurnal/index.php/jsakti
R. K. Singh et al., "Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integrated moving average (ARIMA) model," JMIR Public Health Surveill, vol. 6, no. 2, Apr. 2020, doi: 10.2196/19115.
U. Rahardja, N. Lutfiani, and R. Rahmawati, “Persepsi Mahasiswa Terhadap Berita Pada Website APTISI Student Perception to the News on The APTISI Website,” 2018. [Online]. Available: http://aptisi.or.id/,
J. Pendidikan and D. Konseling, “Dasar Dasar Penulisan Berita.”
A. Prasetyo, N. Nurdin, and H. A. K. Aidilof, "Comparison of Triple Exponential Smoothing and ARIMA in Predicting Cryptocurrency Prices," International Journal of Engineering, Science and Information Technology, vol. 4, no. 4, pp. 63–71, Oct. 2024, doi: 10.52088/ijesty.v4i4.577.
M. Faisal, Nurdin, Fajriana, and Z. Fitri, "Information and Communication Technology Competencies Clustering for students for Vocational High School Students Using K-Means Clustering Algorithm", doi: 10.52088/ijesty.v1i4.318.
A. A. Suryanto, A. Muqtadir, and S. Artikel, “PENERAPAN METODE MEAN ABSOLUTE ERROR (MEA) DALAM ALGORITMA REGRESI LINEAR UNTUK PREDIKSI PRODUKSI PADI Info Artikel : ABSTRAK,” no. 1, p. 11, 2019.
A. N. M. F. Faisal, A. Rahman, M. T. M. Habib, A. H. Siddique, M. Hasan, and M. M. Khan, "Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of Bangladesh," Results in Engineering, vol. 13, Mar. 2022, doi: 10.1016/j.rineng.2022.100365.
DOI: https://doi.org/10.52088/ijesty.v5i1.615
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ansharulhaq Aminsyah, Nurdin, Zara Yunizar