Performance Analysis Algorithm Classification and Regression Trees and Naive Bayes Based Particle Swarm Optimization for Credit Card Transaction Fraud Detection

Rita Afridah, Munirul Ula, Lidya Rosnita

Abstract


With the advancement of technology, credit cards have become a popular tool for transactions, both physically and online, due to their ease of use and seamless integration with banking systems. However, with the increasing use of credit cards, the cases of fraud have also risen, resulting in financial losses for both cardholders and banks. To address this issue, effective and efficient credit card transaction fraud detection has become a top priority. Using machine learning algorithms is one of the techniques that can be employed to detect fraud in credit card transactions. The purpose of this research is to determine the performance and find the best method of the CART algorithm, Naive Bayes, and their combination with Particle Swarm Optimization (PSO) in detecting fraud in credit card transaction histories. The data used consists of 568,630 big data entries with parameters including id, V1-V28, amount, and class. The research results obtained are as follows: the accuracy of the Naive Bayes algorithm is 93.15%, precision is 94%, recall is 93%, and AUC is 0.99. For the CART algorithm, the accuracy is 99.96%, with precision and recall at 100%, and AUC at 1.00. Additionally, the Naive Bayes algorithm combined with PSO achieved an accuracy of 98.50%, precision and recall of 98%, and AUC of 1.00. Lastly, the CART algorithm combined with PSO reached an accuracy of 99.97%, with precision and recall at 100%, and AUC at 1.00. It can be concluded that the best method resulting from the tests conducted is the Classification and Regression Trees method combined with Particle Swarm Optimization.


Keywords


Classification and Regression Trees, Fraud, Machine Learning, Naive Bayes, Particle Swarm Optimization

Full Text:

PDF

References


K. K. Tangel, D. W. Lumintang, and J. A. Kermite, “Kajian Yuridis Tentang Kartu Bank Dalam Transaksi Perbankan,” Jurnal Fakultas Hukum Universitas Sam Ratulangi , vol. 12, 2023.

A. Subroto and A. Arianto, “Penggunaan Kartu Kredit dan Perilaku Belanja Kompulsif: Dampaknya Pada Risiko Gagal Bayar,” Jurnal Managemen Pemasaran, vol. 6, no. 1, pp. 1–7, 2011, doi: 10.9744/pemasaran.6.1.1-7.

N. Christian and J. Veronica, “Dampak Kecurangan Pada Bidang Keuangan Dan Non-Keuangan Terhadap Jenis Fraud di Indonesia,” Jurnal Riset Akuntansi Mercubuana, vol. 8, no. 1, pp. 91–102, 2022, doi: 10.26486/jramb.v8i1.2401.

E. Mustika Ginting, E. Saripa Siburian, M. Dwi Syahfitri, J. V Willem Iskandar Pasar, M. Baru Kota Medan, and S. Utara, “Analisis Perilaku Konsumen dan Keamanan Kartu Kredit Perbankan,” Era Mustika Ginting, dkk) Madani: Jurnal Ilmiah Multidisiplin, vol. 1, no. 4, pp. 2986–6340, 2023, doi: 10.5281/zenodo.7963225.

A. Dwi Rachman Prabowo and Muljono, “Prediksi Nasabah Yang Berpotensi Membuka Simpanan Deposito Menggunakan Naive Bayes Berbasis Particle Swarm Optimization Prediction of Potential Deposit of Customers Using Naive Bayes-Based Particle Swarm Optimization,” Jurnal Teknologi Informasi, vol. 17, no. 2, pp. 208–219, 2018, doi: 10.33633/tc.v17i2.1648.

E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python,” Bina Insani ICT Journal, vol. 7, no. 2, pp. 156–165, 2020, doi: 10.51211/biict.v7i2.1422.

A. Syukron and A. Subekti, “Penerapan Metode Random Over-Under Sampling dan Random Forest untuk Klasifikasi Penilaian Kredit,” Jurnal Informatika, vol. 5, no. 2, pp. 175–185, 2018, doi: 10.31294/ji.v5i2.4158.

R. Ester, S. Lina, and M. Sitio, “Optimasi Algoritma Klasifikasi Decision Tree (CART) dengan Metode Bagging untuk Deteksi Web Phising,” Jurnal Jaringan Sistem Informasi Robotik (JSR), vol. 8, no. 1, pp. 73–78, 2024, [Online]. Available: http://ojsamik.amikmitragama.ac.id

T. Praningki and I. Budi, “Sistem Prediksi Penyakit Kanker Serviks Menggunakan CART, Naive Bayes, dan k-NN Cervical Cancer Disease Prediction System Using CART, Naive Bayes, and k-NN,” Universitas AM IKOM Yogyakarta, vol. 4, no. 2, pp. 83–93, 2017.

N. Parmar and A. Sharma, “Email Spam Detection using Naïve Bayes and Particle Swarm Optimization,” International Journal of Innovative Research in Technology, vol. 6, no. 10, pp. 367–373, 2020, doi: 10.1109/ICCONS.2018.8662957.

E. Arif Riyanto, T. Juninisvianty, and D. Ferdian Nasution, “Analisis Kinerja Algoritma CART dan Naive Bayes Berbasis Particle Swarm Optimization (PSO) untuk Klasifikasi Kelayakan Kredit Koperasi,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 1, pp. 55–60, 2021, doi: 10.25126/jtiik.202182988.

F. Putra, H. F. Tahiyat, R. M. Ihsan, R. Rahmaddeni, and L. Efrizoni, “Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 273–281, Jan. 2024, doi: 10.57152/malcom.v4i1.1085.

D. Barapatre and A. Vijayalakshmi, “Data preparation on large datasets for data science,” Asian Journal of Pharmaceutical and Clinical Research, vol. 10, pp. 485–488, Apr. 2017, doi: 10.22159/ajpcr.2017.v10s1.20526.

R. Y. Putri, Z. Yunizar, and S. Safwandi, “Comparison of the Results of the K-Nearest Neighbor (KNN) and Naïve Bayes Methods in the Classification of ISPA Diseases (Case Study: RSUD Fauziah Bireuen),” JACKA: Journal of Advanced Computer Knowledge and Algorithms, vol. 1, no. 1, pp. 20–24, 2023, doi: : 10.29103/jacka.v1i1.14535.

M. Ula and S. Fachrurrazi, “Analisis Sentimen Cyberbullying pada Media Sosial Twitter menggunakan Metode Support Vector Machine dan Naïve Bayes Classifier,” TECHSI - Jurnal Teknik Informatika, vol. 14, no. 2, pp. 107–123, 2023, doi: 10.29103/techsi.v14i2.12103.

I. Pakaya and P. Perdana, “Particle Swarm Optimization-Fuzzy Logic Controller Untuk Penyearah Satu Fasa,” Jurnal Ilmiah Edutic, vol. 1, no. 1, pp. 1–11, 2014, doi: 10.21107/edutic.v1i1.401.

S. H. Pratiwi, W. Witanti, T. Hendro, U. J. Achmad, and Y. Abstract, “Optimasi Penentuan Vendor Untuk Material Pesawat Menggunakan Algoritma Particle Swarm Optimization,” Jurnal Ilmiah Wahana Pendidikan, Februari, vol. 2024, no. 4, pp. 825–837, doi: 10.5281/zenodo.10537168.

I.- Sahputra, B. Bustami, and Cut Farida Aryani, “The Nutritional Classification of Pregnant Women Using Support Vector Machine (SVM),” Journal Of Informatics And Telecomunication Engineering, vol. 7, no. 1, pp. 174–182, Jul. 2023, doi: 10.31289/jite.v7i1.9764.




DOI: https://doi.org/10.52088/ijesty.v4i3.523

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rita Afridah, Munirul Ula, Lidya Rosnita

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674