Article Open Access

Evaluation of the Quality and Safety of Smoked Fish Produced Using a Modified Efhilink Smoking Cabinet With Different Bio-Smoke Sources

Marita Ika Joesidawati, Suwarsih Suwarsih, Sriwulan Sriwulan

Abstract


Traditional fish smoking methods often raise significant concerns regarding product safety, quality inconsistency, and environmental pollution. This study aimed to evaluate a modified Efhilink smoking cabinet designed to address these issues by utilizing agricultural waste, specifically corn cobs and coconut shells, as bio-smoke sources for producing high-quality, safe smoked fish compliant with the Indonesian National Standard (SNI 2725:2013). Three fish species (mackerel tuna, Euthynnus affinis; flying fish, Cypselurus spp.; and ray, Dasyatis spp.) were processed using the modified cabinet and a traditional cabinet (control) and subsequently analyzed for sensory properties, proximate composition, histamine, TVB-N, pH, total phenolic content, and various contaminants (microbiological, heavy metals, chemical residues, and polycyclic aromatic hydrocarbons (PAH4)). The results demonstrated that all smoked fish samples from the modified cabinet met all critical parameters of the national standard. Coconut shell smoke generally yielded superior products, characterized by higher acceptability in aroma and taste, a greater infusion of phenolic compounds (up to 0.334 mg/kg), and significantly lower levels of PAH4 contaminants compared to the traditional control. All samples from the modified cabinet exhibited histamine levels well below the 100 mg/kg safety limit (12.36–19.37 mg/kg), total plate counts within the permissible range (<10 to 3.6x10? CFU/g), and a complete absence of detectable pathogens (E. coli, Salmonella spp., S. aureus, V. cholerae) or hazardous chemical residues (chloramphenicol, malachite green, nitrofuran); heavy metal contaminants were also found at levels far below the maximum allowable limits. The modified cabinet significantly outperformed the traditional method in reducing PAH4 contamination. The technology not only enhances food safety but also promotes sustainable practices by converting agricultural waste into value-added products. In conclusion, the modified Efhilink cabinet, using either corn cob or coconut shell bio-smoke, effectively produces safe, high-quality smoked fish that complies with stringent food safety standards, with coconut shells demonstrating superior performance as a smoke source by enhancing sensory attributes and bioactive compound content while minimizing hazardous contaminants.


Keywords


Smoked Fish, Food Safety, Bio-Smoke, Histamine, Food Quality

References


BPS-Statistics Indonesia. (2023). Fisheries Statistics of Indonesia. Jakarta.

Sanger, G. (2010). Evaluation of the quality of smoked tuna from traditional processing in North Maluku. Jurnal Ilmu dan Teknologi Perikanan, 2(1), 25-32.

Martínez, O., Salmerón, J., Guillén, M. D., & Casas, C. (2007). Textural and physicochemical changes in salmon (Salmo salar) treated with commercial liquid smoke flavourings. Food Chemistry, 100(2), 498-503.

Montazeri, N., Oliveira, A. C. M., Himelbloom, B. H., Leigh, M. B., & Crapo, C. A. (2013). Chemical characterization of commercial liquid smoke products. Food Science & Nutrition, 1(1), 102–115.

Santos, C. C., de Souza, A. R., da Silva, A. F., de Araújo, E. A., & da Silva, M. V. (2018). Antioxidant and antimicrobial activity of liquid smoke and its potential application to bacon. Innovative Food Science & Emerging Technologies, 48, 189-197.

Prester, L. (2011). Biogenic amines in fish, fish products and shellfish: a review. Food Additives & Contaminants: Part A, 28(11), 1547–1560.

Commission Regulation (EC) No 2074/2005. Establishing microbiological criteria for foodstuffs. Official Journal of the European Union, L 338.

Nurhazisa, N., Syahrul, S., & Nurjanah, N. (2018). Characterization of liquid smoke from coconut shell (Cocos nucifera L.) pyrolysis and its antibacterial activity. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(2), 227-235.

Huss, H. H. (1995). Quality and quality changes in fresh fish. FAO Fisheries Technical Paper No. 348. FAO, Rome.

Lingbeck, J. M., Cordero, P., O'Bryan, C. A., Johnson, M. G., Ricke, S. C., & Crandall, P. G. (2014). Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Science, 97(2), 197-206.

NSFI (2018). National Seafood HACCP Alliance: HACCP Hazard Analysis and Critical Control Point Training Curriculum. 5th Edition.

Joesidawati, M. I., Suwarsih, Nuruddin, A. W., & Sriwulan. (2024). Performance Test Smoked Tool Fish Which Effective, Hygienic, and Eco-Friendly. Revista De Gestão - RGSA, 18(6), e07478. https://doi.org/10.24857/rgsa.v18n6-119

Dewangga, A. (2018). Studi Performa Alat Pengasap Ikan Sistem Tertutup dengan Variasi Bahan Bakar. [Thesis]. Universitas Brawijaya.

Mentari, D., & Sahara, E. (2017). Optimasi Produksi Asap Cair dari Tempurung Kelapa dan Aplikasinya pada Produk Ikan Asap. [Thesis]. Institut Pertanian Bogor.

Leksono, B., Santoso, J., & Wijaya, I. M. (2009). Pengaruh Lama Pengasapan dan Suhu terhadap Karakteristik Ikan Asap. Jurnal Teknologi Hasil Perikanan, 12(1), 45-53.

Heruwati, E. S. (2002). Application of HACCP on traditional processing of smoked fish. Jurnal Teknologi dan Industri Pangan, 13(1), 86-92.

Susanto, E. (2014). Teknologi Pengolahan Ikan Asap. Penerbit Nuansa Cendekia.

Badan Standardisasi Nasional (BSN). (2013). SNI 2725:2013 Ikan Asap. Jakarta.

Badan Standardisasi Nasional (BSN). (2015). SNI 2346:2015 Cara Uji Sensori. Jakarta.

AOAC International. (2005). Official Methods of Analysis of AOAC International (18th ed.). Gaithersburg, MD, USA.

Huss, H. H. (1995). Quality and quality changes in fresh fish. FAO Fisheries Technical Paper No. 348. FAO, Rome.

Commission Regulation (EC) No 2074/2005. Establishing microbiological criteria for foodstuffs. Official Journal of the European Union.

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.

Badan Standardisasi Nasional (BSN). (2008). SNI 2897:2008 Metode Pengujian Cemaran Mikrobiologi dalam Daging, Telur, dan Susu, serta Hasil Olahannya. Jakarta.

United States Environmental Protection Agency (USEPA). (1996). Method 3050B: Acid digestion of sediments, sludges, and soils.

[European Commission. (2002). *Commission Decision 2002/657/EC: Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results*. Official Journal of the European Communities.

Purcaro, G., Moret, S., & Conte, L. S. (2013). Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta, 105, 292-305.




DOI: https://doi.org/10.52088/ijesty.v5i4.1476

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Marita Ika Joesidawati, Suwarsih Suwarsih, Sriwulan Sriwulan

International Journal of Engineering, Science, and Information Technology (IJESTY) eISSN 2775-2674