Article Open Access

A Review of Palm Oil Valorization Technologies

Loso Judijanto

Abstract


The accelerating expansion of palm oil cultivation has triggered a substantial rise in the volume of biomass waste, notably empty fruit bunches (EFB), palm kernel shells (PKS), and palm oil mill effluent (POME), which pose environmental challenges if unmanaged. In response to growing sustainability concerns, this study explores how technological innovations have enabled the valorization of palm oil waste streams within the framework of the circular economy (CE). This research aims to identify and evaluate the range of technologies developed to convert palm-based waste into value-added products and assess their comparative performance in terms of scalability, environmental benefits, and CE alignment. This study adopts a qualitative research approach using the Systematic Literature Review (SLR) method, structured according to the PRISMA protocol. Data were collected through a focused search on the ScienceDirect database using refined Boolean combinations relevant to CE, palm oil biomass, and valorization technologies. A multi-stage screening process involving relevance, article type, publication year (2021–2025), and open-access availability yielded 37 peer-reviewed research articles for in-depth analysis. Data were analyzed thematically and synthesized qualitatively. Findings reveal a diversification of valorization pathways, including anaerobic digestion, pyrolysis, hydrothermal liquefaction, nanomaterial extraction, and catalytic upgrading, each offering distinct advantages and trade-offs. Technologies varied significantly in scalability, environmental impact, and their contribution to CE objectives. The review concludes that integrated and decentralized valorization systems hold great promise for closing resource loops and reducing emissions. Future research should focus on region-specific lifecycle assessments and the techno-economic feasibility of hybrid technologies.


Keywords


Circular Economy, Palm Oil Biomass, Waste Valorization, Sustainable Technology, SLR Method

References


Elroi, H., Górka, Z., & Wdowik-Chojnacka, A. (2023). Enhancing waste resource efficiency: circular economy for sustainability and energy conversion. Frontiers in Environmental Science, 11, 1303792. https://doi.org/10.3389/fenvs.2023.1303792

Munonye, W. C. (2025). Towards Circular Economy Metrics: a Systematic Review. Circular Economy and Sustainability, 1–43. https://doi.org/10.1007/s43615-025-00604-5

Psarommatis, F., May, G., & Azamfirei, V. (2025). Product reuse and repurpose in circular manufacturing: a critical review of key challenges, shortcomings and future directions. Journal of Remanufacturing, 1–38. https://doi.org/10.1007/s13243-025-00153-y

Sjahro, N., Yunus, R., Abdullah, L. C., Nainggolan, M., Abdul Rashid, S., Asis, A. J., & Harun, N. (2025). Valorization of oil palm empty fruit bunch (OPEFB) as membrane polymer via non-solvent induced phase separation method (NIPS) for removal of aqueous contaminants. Discover Sustainability, 6(1), 1–21. https://doi.org/10.1007/s43621-025-01184-y

Suhartini, S., Hidayat, N., Rohma, N. A., Paul, R., Pangestuti, M. B., Utami, R. N., & Melville, L. (2022). Sustainable strategies for anaerobic digestion of oil palm empty fruit bunches in Indonesia: a review. International Journal of Sustainable Energy, 41(11), 2044–2096.

Dolah, R., Karnik, R., & Hamdan, H. (2021). A comprehensive review on biofuels from oil palm empty bunch (EFB): Current status, potential, barriers and way forward. Sustainability, 13(18), 10210. https://doi.org/10.3390/su131810210

Uchegbulam, I., Momoh, E. O., & Agan, S. A. (2022). Potentials of palm kernel shell derivatives: A critical review on waste recovery for environmental sustainability. Cleaner Materials, 6, 100154. https://doi.org/10.1016/j.clema.2022.100154

Abdullah, M. A., Nazir, M. S., Hussein, H. A., Shah, S. M. U., Azra, N., Iftikhar, R., & Hung, Y. T. (2024). New perspectives on biomass conversion and circular economy based on Integrated Algal-Oil Palm Biorefinery framework for sustainable energy and bioproducts co-generation. Industrial Crops and Products, 213, 118452. https://doi.org/10.1016/j.indcrop.2024.118452

Alean, J., Bastidas, M., Boom-Cárcamo, E., Maya, J. C., Chejne, F., Ramírez, S., & Córdoba-Ramirez, M. (2025). Design of a Technical Decision-Making Strategy to Collect Biomass Waste from the Palm Oil Industry as a Renewable Energy Source: Case Study in Colombia. Environments, 12(5), 165. https://doi.org/10.3390/environments12050165

Viendyasari, M., Syukri, M., & Rahmawati, D. (2023). Analysis of Utilization of Palm Oil-Based Circular Bioeconomy in Supporting the Acceleration of East Kalimantan’s Energy Transition. The 6th International Conference on Vocational Education Applied Science and Technology (ICVEAST 2023), 831–847. https://doi.org/10.2991/978-2-38476-132-6_70

Fikri Hamzah, M. A., Abdul, P. M., Mahmod, S. S., Azahar, A. M., & Jahim, J. M. (2020). Performance of anaerobic digestion of acidified palm oil mill effluent under various organic loading rates and temperatures. Water, 12(9), 2432. https://doi.org/10.3390/w12092432

Mohd Yusof, M. A. (2023). Performance optimization of industrial scale in-ground lagoon anaerobic digester for palm oil mill effluent (POME) treatment [University of Nottingham]. https://doi.org/10.1016/j.fuel.2023.129916

Radu, T., Smedley, V., Yadav, D., Blanchard, R., Rahaman, S. A., Salam, A., & Visvanathan, C. (2022). The design, development and assessment of a novel de-centralised IoT-based remote monitoring of a small-scale anaerobic digester network. Journal of Energy and Power Technology, 4(4), 1–17. https://doi.org/10.21926/jept.2204039

Tannady, H., Aloria, M.A., Djunaedi, M.K.D., Purwanto, E. (2025). Optimizing Distribution Costs Using Linear Programming in Refinery Sugar Manufacturer. Journal of Global Innovations in Agricultural Sciences, 13(2), 665–670. https://doi.org/10.22194/JGIAS/25.1

Ibrahim, H. A., Zaidan, A. A., Qahtan, S., & Zaidan, B. B. (2023). Sustainability assessment of palm oil industry 4.0 technologies in a circular economy applications based on interval-valued Pythagorean fuzzy rough set-FWZIC and EDAS methods. Applied Soft Computing, 136, 110073. https://doi.org/10.1016/j.asoc.2023.110073

Ho, Q. N., Lau, W. J., Jaafar, J., Othman, M. H. D., & Yoshida, N. (2025). Membrane Technology for Valuable Resource Recovery from Palm Oil Mill Effluent (POME): A Review. Membranes, 15(5), 138. https://doi.org/10.3390/membranes15050138

Chia, W. Y., Chong, Y. Y., Chew, K. W., Vimali, E., Jayaram, M., Selvarajoo, A., & Arumugasamy, S. K. (2020). Outlook on biorefinery potential of palm oil mill effluent for resource recovery. Journal of Environmental Chemical Engineering, 8(6), 104519. https://doi.org/10.1016/j.jece.2020.104519

Fernandes Andry, J., Tannady, H., Dwinoor Rembulan, G., & Edinata, A. (2023). Avocado Price Data Analysis Using Decision Tree. Salud, Ciencia Y Tecnología - Serie De Conferencias, 2, 568. https://doi.org/10.56294/sctconf2023568

Geng, A. (2014). Upgrading of oil palm biomass to value-added products. In Biomass and Bioenergy: Applications (pp. 187–209).

M. Dakhore, R. D. Jenifer, M. D. Shamout, N. Anute, W. G. P. A. Hidayat and H. Tannady, "The Application of Time Series Forecasting to Financial Risk Management," 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 2024, pp. 1-7, https://doi.org/10.1109/ICCCNT61001.2024.10725122

Aprilianto, H. C., & Rau, H. (2025). A Multi-Objective Optimization Approach for Generating Energy from Palm Oil Wastes. Energies, 18(11). https://doi.org/10.3390/en18112947

Adeoye, A. O., Quadri, R. O., & Lawal, O. S. (2022). Assessment of biofuel potential of tenera palm kernel shell via fixed bed pyrolysis and thermal characterization. Results in Surfaces and Interfaces, 9, 100091. https://doi.org/10.1016/j.rsurfi.2022.100091

Jansuwan, K., Jumrat, S., Punvichai, T., Karrila, S., Sirikitputtisak, T., Songthongkaew, N., & Pianroj, Y. (2023). Properties of bio-oil and bio-char from high-intensity microwave-assisted pyrolysis of oil palm shell waste. BioResources, 18(1), 1420. https://doi.org/10.15376/biores.18.1.1420-1435

de Carvalho, D. M., Sevastyanova, O., Penna, L. S., da Silva, B. P., Lindström, M. E., & Colodette, J. L. (2015). Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products, 73, 118–126. https://doi.org/10.1016/j.indcrop.2015.04.021

Das, P. (2025). A review on the catalytic upgradation of vegetable/pyrolysis bio-oil from renewable sources: kinetic studies and environmental impact assessment. Catalysis Science & Technology. https://doi.org/10.1039/D4CY01475H

Pérez-Almada, D., Galán-Martín, Á., del Mar Contreras, M., & Castro, E. (2023). Integrated techno-economic and environmental assessment of biorefineries: review and future research directions. Sustainable Energy & Fuels, 7(17), 4031–4050. https://doi.org/10.1039/D3SE00405H

Cheah, W. Y., Siti-Dina, R. P., Leng, S. T. K., Er, A. C., & Show, P. L. (2023). Circular bioeconomy in palm oil industry: Current practices and future perspectives. Environmental Technology & Innovation, 30, 103050. https://doi.org/10.1016/j.eti.2023.103050

Jamaludin, N. F., Ab Muis, Z., Hashim, H., Mohamed, O. Y., & Keng, L. L. (2024). A holistic mitigation model for net zero emissions in the palm oil industry. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e27265

Poopalam, K. D., Tuan Ismail, T. N. M., Hanzah, N. ’Ain, Humaira Alias, A., Abdul Wahab, N., Ibrahim, Z., Subramaniam, V., Armylisas, A. H. N., & Idris, Z. (2024). Utilization of oil palm biomass and Polyurethanes as sustainable construction materials: A review. Developments in the Built Environment, 17, 100380. https://doi.org/https://doi.org/10.1016/j.dibe.2024.100380

Ciano, M. P., Peron, M., Panza, L., & Pozzi, R. (2025). Industry 4.0 technologies in support of circular Economy: A 10R-based integration framework. Computers & Industrial Engineering, 201, 110867. https://doi.org/https://doi.org/10.1016/j.cie.2025.110867

Tan, Y. Y., Bello, M. M., & Abdul Raman, A. A. (2021). Towards cleaner production in palm oil industry: Advanced treatment of biologically-treated POME using palm kernel shell-based adsorbent. Cleaner Engineering and Technology, 2, 100079. https://doi.org/https://doi.org/10.1016/j.clet.2021.100079

Kan, K. W., Chan, Y. J., Tiong, T. J., & Lim, J. W. (2024). Maximizing biogas yield from palm oil mill effluent (POME) through advanced simulation and optimisation techniques on an industrial scale. Chemical Engineering Science, 285, 119644. https://doi.org/10.1016/j.ces.2023.119644

Sidabutar, R., Trisakti, B., Irvan, I., Batubara, S. F., Gusty, N. D., Rambe, H. S., Syahputra, M. R., Michael, M., Syaifan, M., Effendi, E. R., Alexander, V., Nabilah, Y., Fath, M. T., Dalimunthe, N. F., Sijabat, M., Syafriandy, S., & Takriff, M. S. (2025). Development of a novel co-composting system for empty fruit bunches using UASB-HCPB fermentor-derived effluent for sustainable palm oil waste management: Design, performance evaluation, and kinetic study. Journal of Hazardous Materials Advances, 18, 100730. https://doi.org/https://doi.org/10.1016/j.hazadv.2025.100730

Seah, C. C., Habib, S. H., Hafriz, R. S. R. M., Shamsuddin, A. H., Razali, N. M., & Salmiaton, A. (2024). Prospective energy content assessment of waste biomass and polymer via preliminary analysis. Results in Engineering, 22, 102301. https://doi.org/https://doi.org/10.1016/j.rineng.2024.102301

Nguyen, T. K. C., & Toan, N. Q. (2024). Developing biomass energy from agricultural by-products in the context of trade development. Energy Strategy Reviews, 54, 101417. https://doi.org/https://doi.org/10.1016/j.esr.2024.101417

Soares, M., Faria, L., Miranda, T., Pereira, E., Vilarinho, C., & Carvalho, J. (2025). The potential of agri-food waste to solve construction’s environmental problems: A review. Cleaner and Circular Bioeconomy, 10, 100138. https://doi.org/https://doi.org/10.1016/j.clcb.2025.100138

Akhbari, A., Awalin, L. J., Wen, L. C., Ali, M. S., & Ibrahim, S. (2024). Evolution of microbial community structure during biohydrogen production process of palm oil anaerobic sludge. Renewable Energy, 237, 121677. https://doi.org/https://doi.org/10.1016/j.renene.2024.121677

Dominic, D., & Baidurah, S. (2025). A review of biological processing technologies for palm oil mill waste treatment and simultaneous bioenergy production at laboratory scale, pilot scale and industrial scale applications with technoeconomic analysis. Energy Conversion and Management: X, 100914. https://doi.org/10.1016/j.ecmx.2025.100914

Ascher, S., Gordon, J., Bongiovanni, I., Watson, I., Hermannsson, K., Gillespie, S., Sarangi, S., Biakhmetov, B., Bhargava, P. C., Bhaskar, T., Krishna, B. B., Pandey, A., & You, S. (2024). Trigeneration based on the pyrolysis of rural waste in India: Environmental impact, economic feasibility and business model innovation. Science of The Total Environment, 921, 170718. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170718

Shahbaz, M., AlNouss, A., Ghiat, I., Mckay, G., Mackey, H., Elkhalifa, S., & Al-Ansari, T. (2021). A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling, 173, 105734. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105734

Ngosong, F., Anyanwu, C. N., & Eze, I. S. (2024). An assessment of the renewable energy potential of oil palm residues: A case study of CDC plantation, Cameroon. Heliyon, 10(12), e32410. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e32410

Zahraee, S. M., Shiwakoti, N., & Stasinopoulos, P. (2022). Agricultural biomass supply chain resilience: COVID-19 outbreak vs. sustainability compliance, technological change, uncertainties, and policies. Cleaner Logistics and Supply Chain, 4, 100049. https://doi.org/https://doi.org/10.1016/j.clscn.2022.100049

Kayikci, Y., Kazancoglu, Y., Gozacan-Chase, N., Lafci, C., & Batista, L. (2022). Assessing smart circular supply chain readiness and maturity level of small and medium-sized enterprises. Journal of Business Research, 149, 375–392. https://doi.org/https://doi.org/10.1016/j.jbusres.2022.05.042

Valencia Isaza, A., Mejía Arcila, J. M., Restrepo, J. W., Valencia García, M. F., & Peña, L. V. W. (2023). Performance and applications of lightweight geopolymer and alkali activated composites with incorporation of ceramic, polymeric and lignocellulosic wastes as aggregates: A review. Heliyon, 9(10), e20044. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e20044

Eh, C. L. M., Tiong, A. N. T., Lim, C. H., Kansedo, J., How, B. S., & Ng, W. P. Q. (2024). A MILP model for integrated circular hydrogen economy based in Malaysia with intermodal transportation. International Journal of Hydrogen Energy, 92, 1320–1334. https://doi.org/https://doi.org/10.1016/j.ijhydene.2024.10.319

Okoro, P. A., Chong, K., & Röder, M. (2024). Enabling modern bioenergy deployment in Nigeria to support industry and local communities. Biomass and Bioenergy, 190, 107403. https://doi.org/https://doi.org/10.1016/j.biombioe.2024.107403

Jijingi, H. E., Yazdia, S. K., Abakr, Y. A., & Satya, A. D. M. (2025). Bioremediation of Heavy Metals in Palm Oil Mill Effluent (POME) Using Chlorella vulgaris: A Biological Approach. Cleaner Water, 100094. https://doi.org/https://doi.org/10.1016/j.clwat.2025.100094

Burström, T., Lahti, T., Parida, V., & Wincent, J. (2024). Industrial ecosystems: A systematic review, framework and research agenda. Technological Forecasting and Social Change, 208, 123656. https://doi.org/https://doi.org/10.1016/j.techfore.2024.123656

Saelor, S., Kongjan, P., Prasertsan, P., Mamimin, C., & O-Thong, S. (2024). Enhancing thermophilic methane production from oil palm empty fruit bunches through various pretreatment methods: A comparative study. Heliyon, 10(20), e39668. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e39668

Tukanghan, W., Seengenyoung, J., In-chan, S., Mamimin, C., Chanthong, S., & O-Thong, S. (2025). Synergistic effects of trace metals on hydrogen and methane production from palm oil mill effluent using two-stage anaerobic digestion. Carbon Resources Conversion, 100309. https://doi.org/https://doi.org/10.1016/j.crcon.2025.100309

Yahaya, E., Yeo, W. S., & Nandong, J. (2024). Process modeling and 3-stage photobioreactor design for algae cultivation and CO2 capture: A case study using palm oil mill effluent. Biochemical Engineering Journal, 212, 109532. https://doi.org/https://doi.org/10.1016/j.bej.2024.109532

Gutiérrez Ortiz, F. J. (2022). Biofuel production from supercritical water gasification of sustainable biomass. Energy Conversion and Management: X, 14, 100164. https://doi.org/https://doi.org/10.1016/j.ecmx.2021.100164

Sar, T., Marchlewicz, A., Harirchi, S., Mantzouridou, F. T., Hosoglu, M. I., Akbas, M. Y., Hellwig, C., & Taherzadeh, M. J. (2024). Resource recovery and treatment of wastewaters using filamentous fungi. Science of The Total Environment, 951, 175752. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.175752

Gautam, B., Tiwari, S., Pokhrel, M. R., Tomberlin, J. K., & Khanal, P. (2025). Expanding black soldier fly (BSF; Hermetia illucens; Diptera: Stratiomyidae) in the developing world: Use of BSF larvae as a biological tool to recycle various organic biowastes for alternative protein production in Nepal. Biotechnology Reports, 45, e00879. https://doi.org/https://doi.org/10.1016/j.btre.2025.e00879

Govindan, K., Kannan, D., Jørgensen, T. B., & Nielsen, T. S. (2022). Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence. Transportation Research Part E: Logistics and Transportation Review, 164, 102725. https://doi.org/https://doi.org/10.1016/j.tre.2022.102725

Petrovi?, A., Vohl, S., Gruber, S., Rola, K., Predikaka, T. C., ?u?ek, L., & Urbancl, D. (2025). Thermogravimetric, kinetic and thermodynamic behaviour of raw and hydrothermally pretreated oil cakes during pyrolysis and TG-FTIR analysis of the gaseous products. Renewable Energy, 247, 123041. https://doi.org/https://doi.org/10.1016/j.renene.2025.123041

Susi, S., Ainuri, M., Wagiman, W., & Falah, M. A. F. (2024). Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films. Journal of Renewable Materials, 12(3), 513–537. https://doi.org/https://doi.org/10.32604/jrm.2024.045586

Nasruddin, Setianto, W. B., Lanjar, Atmaji, P., Agustini, S., Rienoviar, Wulandari, E. P., Sari, T. I., & Ibrahim, B. (2024). Utilization of spent bleaching earth as green filler and plasticizer in the manufacture of rubber compounds for solid tire production. Results in Engineering, 23, 102690. https://doi.org/https://doi.org/10.1016/j.rineng.2024.102690

Izaola, B., & Akizu-Gardoki, O. (2024). Biodiversity burdens in Spanish conventional and low-impact single-family homes. Science of The Total Environment, 909, 168371. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.168371

Abu Aisheh, Y. I. (2023). Palm oil fuel ash as a sustainable supplementary cementitious material for concrete: A state-of-the-art review. Case Studies in Construction Materials, 18, e01770. https://doi.org/https://doi.org/10.1016/j.cscm.2022.e01770

Abelha, P., Leiser, S., Pels, J. R., & Cieplik, M. K. (2022). Combustion properties of upgraded alternative biomasses by washing and steam explosion for complete coal replacement in coal-designed power plant applications. Energy, 248, 123546. https://doi.org/https://doi.org/10.1016/j.energy.2022.123546

Phang, F. J. F., Soh, M., Khaerudini, D. S., Timuda, G. E., Chew, J. J., How, B. S., Loh, S. K., Yusup, S., & Sunarso, J. (2023). Catalytic wet torrefaction of lignocellulosic biomass: An overview with emphasis on fuel application. South African Journal of Chemical Engineering, 43, 162–189. https://doi.org/https://doi.org/10.1016/j.sajce.2022.10.008

Monir, M. U., Aziz, A. A., Karim, K. M. R., Khatun, F., Tarek, M., Yousuf, A., & Vo, D. V. N. (2023). Catalytic gasification of empty palm fruit bunches using charcoal and bismuth oxide for syngas production. Topics in Catalysis, 66(1), 64–74. https://doi.org/10.1007/s11244-022-01650-1

Harsono, S. S., Grundmann, P., & Soebronto, S. (2014). Anaerobic treatment of palm oil mill effluents: potential contribution to net energy yield and reduction of greenhouse gas emissions from biodiesel production. Journal of Cleaner Production, 64, 619–627. https://doi.org/10.1016/j.jclepro.2013.08.042

Derman, E., Abdulla, R., Marbawi, H., Sabullah, M. K., Gansau, J. A., & Ravindra, P. (2022). Simultaneous saccharification and fermentation of empty fruit bunches of palm for bioethanol production using a microbial consortium of S. cerevisiae and T. harzianum. Fermentation, 8(7), 295. https://doi.org/10.3390/fermentation8070295

Awad, M. I., Makkawi, Y., & Hassan, N. M. (2024). Yield and energy modeling for biochar and bio-oil using pyrolysis temperature and biomass constituents. ACS Omega, 9(16), 18654–18667. https://doi.org/10.1021/acsomega.4c01646

Yerrayya, A., Nikunj, A., Prashanth, P. F., Chakravarthy, S. R., Natarajan, U., & Vinu, R. (2022). Optimization of bio-crude yield and its calorific value from hydrothermal liquefaction of bagasse using methanol as co-solvent. Energy, 244, 123192. https://doi.org/10.1016/j.energy.2022.123192

Karina, M., Satoto, R., Abdullah, A. D., & Yudianti, R. I. K. E. (2020). Properties of nanocellulose obtained from sugar palm (Arenga pinnata) fiber by acid hydrolysis in combination with high-pressure homogenization. Cellulose Chemistry and Technology, 54(2), 33–38.

Baby, R., Hussein, M. Z., Zainal, Z., & Abdullah, A. H. (2021). Functionalized activated carbon derived from palm kernel shells for the treatment of simulated heavy metal-contaminated water. Nanomaterials, 11(11), 3133.

Li, J., Sun, L., Hua, D., Lu, X., Yang, D., & Wu, Z. (2025). Catalytic Pyrolysis of Cellulose Biomass to Aromatic Hydrocarbons Using Modified HZSM-5 Zeolite. Nanomaterials, 15(10), 751.

Norrahim, M. N. F., Farid, M. A. A., Lawal, A. A., Yasim-Anuar, T. A. T., Samsudin, M. H., & Zulkifli, A. A. (2022). Emerging technologies for value-added use of oil palm biomass. Environmental Science: Advances, 1(3), 259–275. https://doi.org/10.1039/D2VA00029F

Umar, M. S., Jennings, P., & Urmee, T. (2013). Strengthening the palm oil biomass Renewable Energy industry in Malaysia. Renewable Energy, 60, 107–115. https://doi.org/10.1016/j.renene.2013.04.010

Roberts, E. J., Karadaghi, L. R., Wang, L., Malmstadt, N., & Brutchey, R. L. (2019). Continuous flow methods of fabricating catalytically active metal nanoparticles. ACS Applied Materials & Interfaces, 11(31), 27479–27502. https://doi.org/10.1021/acsami.9b07268

Tanimu, A., Jaenicke, S., & Alhooshani, K. (2017). Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chemical Engineering Journal, 327, 792–821. https://doi.org/10.1016/j.cej.2017.06.161

Samer, M. (2022). Life cycle assessment of a portable assembly biogas unit used for treating food, kitchen and landscape wastes. Agricultural Engineering International: CIGR Journal, 24(1). https://doi.org/10.3390/en14206495

Sodri, A., & Septriana, F. E. (2022). Biogas Power Generation from Palm oil mill effluent (POME): Techno-economic and environmental impact evaluation. Energies, 15(19), 7265. https://doi.org/10.3390/en15197265

Suksaroj, T. T., Yaeed, S., & Suksaroj, C. (2020). The effect of POME ultrasonication pretreatment on biogas production and reduction of greenhouse gases emissions from wastewater treatment units of palm oil mills. Desalination and Water Treatment, 202, 86–94.

Chiaramonti, D., Lotti, G., Vaccari, F. P., & Sanei, H. (2024). Assessment of long-lived Carbon permanence in agricultural soil: Unearthing 15 years-old biochar from long-term field experiment in vineyard. Biomass and Bioenergy, 191, 107484. https://doi.org/10.1016/j.biombioe.2024.107484

Bolan, N. S., Kunhikrishnan, A., Choppala, G. K., Thangarajan, R., & Chung, J. W. (2012). Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Science of the Total Environment, 424, 264–270.

Kongto, P., Palamanit, A., Ninduangdee, P., Singh, Y., Chanakaewsomboon, I., Hayat, A., & Wae-hayee, M. (2022). Intensive exploration of the fuel characteristics of biomass and biochar from oil palm trunk and oil palm fronds for supporting increasing demand of solid biofuels in Thailand. Energy Reports, 8, 5640–5652.

Munonye, W. C. (2025). Towards Circular Economy Metrics: a Systematic Review. Circular Economy and Sustainability, 1–43. https://doi.org/10.1007/s43615-025-00604-5




DOI: https://doi.org/10.52088/ijesty.v5i4.1171

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Loso Judijanto

International Journal of Engineering, Science, and Information Technology (IJESTY) eISSN 2775-2674