Article Open Access

Emerging Carbon Capture Technologies in the Palm Oil Industry: A Review of Bioenergy and Carbon Capture Storage Approaches

Loso Judijanto

Abstract


The accelerating impacts of climate change have heightened global interest in technologies that reduce greenhouse gas emissions from high-emission sectors such as agriculture and agri-processing. The palm oil sector is notably both a significant emitter and a promising avenue for decarbonization efforts, particularly through the integration of bioenergy systems and carbon capture technologies. This study aims to explore the current state of technological development in carbon capture and storage (CCS) and bioenergy applications within the palm oil industry and to identify the major challenges and opportunities that shape their implementation between 2021 and 2025. This investigation employs a qualitative design through the SLR method, structured in accordance with the PRISMA framework for transparency and rigor in literature synthesis. Data were collected from the ScienceDirect database using a refined combination of Boolean search terms. A total of 1,088 articles were initially identified and screened through a multistage filtration process that included relevance checks, publication period constraints, research article type, and open-access availability. This process resulted in 36 articles that met all inclusion criteria and were analyzed further. Data were synthesized through thematic analysis to classify technological pathways, assess implementation trends, and evaluate technical, economic, and policy-related barriers. Findings reveal that while bioenergy from palm oil residues is widely adopted, CCS deployment remains minimal due to cost, infrastructure, and regulatory limitations. The study concludes that targeted policy support and innovation are essential to scaling up carbon management in this sector. Future research should prioritize pilot demonstrations and interdisciplinary assessments of CCS integration feasibility.


Keywords


Carbon Capture, Bioenergy, Palm Oil Industry, CCS, Systematic Literature Review

References


Ismail, S. A., Ang, W. L., Mahmoudi, E., Mohammad, A. W., & Wong, W. Y. (2025). Enhanced peroxi-coagulation process for the treatment of anaerobically-treated palm oil mill effluent (POME). Journal of Industrial and Engineering Chemistry, 149, 859–874. https://doi.org/10.1016/j.jiec.2025.02.045

Yahaya, E., Yeo, W. S., & Nandong, J. (2024). Process modeling and 3-stage photobioreactor design for algae cultivation and CO2 capture: A case study using palm oil mill effluent. Biochemical Engineering Journal, 212, 109532. https://doi.org/10.1016/j.bej.2024.109532

Khan, S., Qureshi, K. M., Luyao, Z., Lup, A. N. K., Patah, M. F. A., Chuah, C. Y., & Wan Daud, W. M. A. (2024). Jet fuel production via palm oil hydrodeoxygenation over bifunctional zeolite mixture supported Ni catalyst: Effect of Si/Al ratio. Biomass and Bioenergy, 185, 107237. https://doi.org/10.1016/j.biombioe.2024.107237

Febijanto, I., Hermawan, E., Adiarso, A., Mustafa, A., Rahardjo, P., Wijono, R. A., & Sudjadi, U. (2024). Techno-enviro-economic assessment of bio-CNG derived from Palm Oil Mill Effluent (POME) for public transportation in Pekanbaru City. Renewable Energy Focus, 49, 100569. https://doi.org/10.1016/j.ref.2024.100569

Mongkhonsiri, G., Thongchul, N., Arpornwichanop, A., Lee, J. H., Gani, R., & Assabumrungrat, S. (2023). A systematic design of integrated palm-oil biorefinery networks: Identifying sustainable solutions. Sustainable Production and Consumption, 42, 138–157. https://doi.org/10.1016/j.spc.2023.09.015

Ocampo Batlle, E. A., Escobar Palacio, J. C., Silva Lora, E. E., Da Costa Bortoni, E., Horta Nogueira, L. A., Carrillo Caballero, G. E., Vitoriano Julio, A. A., & Escorcia, Y. C. (2021). Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol. Journal of Cleaner Production, 311, 127638. https://doi.org/10.1016/j.jclepro.2021.127638

Restiawaty, E., Maulana, A., Umi Culsum, N. T., Aslan, C., Suendo, V., Nishiyama, N., & Budhi, Y. W. (2021). The removal of 3-monochloropropane-1,2-diol ester and glycidyl ester from refined-bleached and deodorized palm oil using activated carbon. RSC Advances, 11(27), 16500–16509. https://doi.org/10.1039/d1ra00704a

Shahidul, M. I., Malcolm, M. L., Begum, S., Hashmi, M. S. J., Islam, M. S., & Eugene, J. J. (2020). Renewable Energy Production From Environmental Hazardous Palm Oil Mill Waste Materials: A Review. In S. Hashmi & I. A. Choudhury (Eds.), Encyclopedia of Renewable and Sustainable Materials (pp. 902–914). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11564-4

Abdul Hamid, N. N., & Lim, J. S. (2019). Evaluation of processing route alternatives for accessing the integration of algae-based biorefinery with palm oil mill. Journal of Cleaner Production, 212, 1282–1299. https://doi.org/10.1016/j.jclepro.2018.12.104

Zahraee, S. M., Golroudbary, S. R., Shiwakoti, N., & Stasinopoulos, P. (2022). Palm oil biomass global supply chain: environmental emissions vs. technology development of maritime transportation. Procedia CIRP, 105, 817–822. https://doi.org/10.1016/j.procir.2022.02.135

Bari, S., & Hossain, S. N. (2019). Performance and emission analysis of a diesel engine running on palm oil diesel (POD). Energy Procedia, 160, 92–99. https://doi.org/10.1016/j.egypro.2019.02.12

Tannady, H., Aloria, M.A., Djunaedi, M.K.D., Purwanto, E. (2025). Optimizing Distribution Costs Using Linear Programming in Refinery Sugar Manufacturer. Journal of Global Innovations in Agricultural Sciences, 13(2), 665–670. https://doi.org/10.22194/JGIAS/25.1

Ramirez-Contreras, N. E., Munar-Florez, D. A., Garcia-Nuñez, J. A., Mosquera-Montoya, M., & Faaij, A. P. C. (2020). The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. Journal of Cleaner Production, 258, 120757. https://doi.org/10.1016/j.jclepro.2020.120757

Hariz, H. B., Takriff, M. S., Mohd Yasin, N. H., Ba-Abbad, M. M., & Mohd Hakimi, N. I. N. (2019). Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat Palm Oil Mill Effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. Journal of Water Process Engineering, 32, 100907. https://doi.org/10.1016/j.jwpe.2019.100907

Uddin, M. N., Rahman, M. A., Taweekun, J., Techato, K., Mofijur, M., & Rasul, M. (2019). Enhancement of biogas generation in up-flow sludge blanket (UASB) bioreactor from palm oil mill effluent (POME). Energy Procedia, 160, 670–676. https://doi.org/10.1016/j.egypro.2019.02.220

M. Dakhore, R. D. Jenifer, M. D. Shamout, N. Anute, W. G. P. A. Hidayat and H. Tannady, "The Application of Time Series Forecasting to Financial Risk Management," 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 2024, pp. 1-7, https://doi.org/10.1109/ICCCNT61001.2024.10725122

Younis, A., Lap, T., Yáñez, E., Suarez Bermudez, L., Benders, R., & Faaij, A. (2023). Exploring the spatiotemporal evolution of bioenergy with carbon capture and storage and decarbonization of oil refineries with a national energy system model of Colombia. Energy Strategy Reviews, 50, 101232. https://doi.org/10.1016/j.esr.2023.101232

Ganeshan, P., V S, V., Gowd, S. C., Mishra, R., Singh, E., Kumar, A., Kumar, S., Pugazhendhi, A., & Rajendran, K. (2023). Bioenergy with carbon capture, storage and utilization: Potential technologies to mitigate climate change. Biomass and Bioenergy, 177, 106941. https://doi.org/10.1016/j.biombioe.2023.106941

Hernandez, J. C. B., Gutierrez, A. S., Ramírez-Contreras, N. E., Eras, J. J. C., García-Nunez, J. A., Agudelo, O. R. B., & Lora, E. E. S. (2024). Biomass-based energy potential from the oil palm agroindustry in Colombia: A path to low carbon energy transition. Journal of Cleaner Production, 449, 141808. https://doi.org/10.1016/j.jclepro.2024.141808

Wiesberg, I. L., de Medeiros, J. L., Paes de Mello, R. V, Santos Maia, J. G. S., Bastos, J. B. V, & de Queiroz F. Araújo, O. (2021). Bioenergy production from sugarcane bagasse with carbon capture and storage: Surrogate models for techno-economic decisions. Renewable and Sustainable Energy Reviews, 150, 111486. https://doi.org/10.1016/j.rser.2021.111486

Ajeeb, W., Gomes, D. M., Neto, R. C., & Baptista, P. (2025). Life cycle analysis of hydrotreated vegetable oils production based on green hydrogen and used cooking oils. Fuel, 390, 134749. https://doi.org/10.1016/j.fuel.2025.134749

Selosse, S. (2019). Chapter 12 - Bioenergy with carbon capture and storage: how carbon storage and biomass resources potentials can impact the development of the BECCS. In J. C. Magalhães Pires & A. L. Da Cunha Gonçalves (Eds.), Bioenergy with Carbon Capture and Storage (pp. 237–256). Academic Press. https://doi.org/10.1016/B978-0-12-816229-3.00012-0

Panjaitan, W., Prihandini, G., Restiawaty, E., Rendra Graha, H. P., Miyamoto, M., Uemiya, S., Akhmaloka, A., & Budhi, Y. W. (2024). Enhanced fatty acid production using recombinant Lipase in a Rotating Bed Reactor (RBR). Case Studies in Chemical and Environmental Engineering, 10, 101017. https://doi.org/10.1016/j.cscee.2024.101017

Yulistiani, F., Aqsha, & Bindar, Y. (2025). Sustainable biochar from empty fruit bunches: Technological innovations and future perspectives. Journal of Analytical and Applied Pyrolysis, 189, 107111. https://doi.org/10.1016/j.jaap.2025.107111

Gan, S., Chen, R. S., Mohammad Padzil, F. N., Moosavi, S., Tarawneh, M. A., Loh, S. K., & Idris, Z. (2023). Potential valorization of oil palm fiber in versatile applications towards sustainability: A review. Industrial Crops and Products, 199, 116763. https://doi.org/10.1016/j.indcrop.2023.116763

binti Abdul Rahim, K. S., binti Samsuri, A., binti Jamal, S. H., binti Mohd Nor, S. A., binti Rusly, S. N. A., binti Ariff, H., & binti Abdul Latif, N. S. (2024). Redefining biofuels: Investigating oil palm biomass as a promising cellulose feedstock for nitrocellulose-based propellant production. Defence Technology, 37, 111–132. https://doi.org/10.1016/j.dt.2023.09.014

Saharudin, D. M., Jeswani, H. K., & Azapagic, A. (2023). Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes. Applied Energy, 349, 121506. https://doi.org/10.1016/j.apenergy.2023.121506

Goswami, A., & Karali, B. (2025). Effects of growing-season weather on the dynamic price relationships between biofuel feedstocks. Energy Economics, 148, 108581. https://doi.org/10.1016/j.eneco.2025.108581

Saravanan, A., Ragini, Y. P., Karishma, S., Hemavathy, R. V, & Jyotsna, M. (2025). A review on advancing sustainable energy: The role of biomass and bioenergy in a circular economy. Sustainable Futures, 10, 100835. https://doi.org/10.1016/j.sftr.2025.100835

Raman, R., Sreenivasan, A., Kulkarni, N. V, Suresh, M., & Nedungadi, P. (2025). Analyzing the contributions of biofuels, biomass, and bioenergy to sustainable development goals. IScience, 28(4), 112157. https://doi.org/10.1016/j.isci.2025.112157

Nurdiawati, A., & Urban, F. (2022). Decarbonising the refinery sector: A socio-technical analysis of advanced biofuels, green hydrogen and carbon capture and storage developments in Sweden. Energy Research & Social Science, 84, 102358. https://doi.org/10.1016/j.erss.2021.102358

Christiansen, K. L., & Lund, J. F. (2024). Seeing the limits of voluntary corporate climate action in food and technology sustainability reports. Energy Research & Social Science, 118, 103798. https://doi.org/10.1016/j.erss.2024.103798

Wang, B., Ting, Z. J., & Zhao, M. (2024). Sustainable aviation fuels: Key opportunities and challenges in lowering carbon emissions for aviation industry. Carbon Capture Science & Technology, 13, 100263. https://doi.org/10.1016/j.ccst.2024.100263

Svitni?, T., Beer, K., Sundmacher, K., & Böcher, M. (2024). Optimal design of a sector-coupled renewable methanol production amid political goals and expected conflicts: Costs vs. land use. Sustainable Production and Consumption, 44, 123–150. https://doi.org/10.1016/j.spc.2023.12.003

Saharudin, D. M., Jeswani, H. K., & Azapagic, A. (2024a). Biochar from agricultural wastes: Environmental sustainability, economic viability and the potential as a negative emissions technology in Malaysia. Science of The Total Environment, 919, 170266. https://doi.org/10.1016/j.scitotenv.2024.170266

Welfle, A. J., Almena, A., Arshad, M. N., Banks, S. W., Butnar, I., Chong, K. J., Cooper, S. G., Daly, H., Garcia Freites, S., Güleç, F., Hardacre, C., Holland, R., Lan, L., Lee, C. S., Robertson, P., Rowe, R., Shepherd, A., Skillen, N., Tedesco, S., … Röder, M. (2023). Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems. Biomass and Bioenergy, 177, 106919. https://doi.org/10.1016/j.biombioe.2023.106919

Marami, H., Khademi, S., Rafiee, S., Mobli, H., Birkved, M., Li, H., Angelidaki, I., & Khoshnevisan, B. (2025). Upcycling anaerobic digestion streams into feed-grade protein for increased environmental sustainability. Renewable and Sustainable Energy Reviews, 216, 115638. https://doi.org/10.1016/j.rser.2025.115638

Sovacool, B. K., Daniels, C., & AbdulRafiu, A. (2022). Science for whom? Examining the data quality, themes, and trends in 30 years of public funding for global climate change and energy research. Energy Research & Social Science, 89, 102645. https://doi.org/10.1016/j.erss.2022.102645

Saharudin, D. M., Jeswani, H. K., & Azapagic, A. (2024b). Reforestation of tropical rainforests as a negative emissions technology in Malaysia: An environmental and economic sustainability assessment. Journal of Environmental Management, 371, 123250. https://doi.org/10.1016/j.jenvman.2024.123250

Clery, D. S., Vaughan, N. E., Forster, J., Lorenzoni, I., Gough, C. A., & Chilvers, J. (2021). Bringing greenhouse gas removal down to earth: Stakeholder supply chain appraisals reveal complex challenges. Global Environmental Change, 71, 102369. https://doi.org/10.1016/j.gloenvcha.2021.102369

Bouter, A., Hurtig, O., Besseau, R., Buffi, M., Kulisic, B., & Scarlat, N. (2025). Updating the greenhouse gas emissions of liquid biofuels from Annex V of the Renewable Energy Directive II (RED II): An overview. Biomass and Bioenergy, 199, 107886. https://doi.org/10.1016/j.biombioe.2025.107886

Saharudin, D. M., Jeswani, H. K., & Azapagic, A. (2025). Building with biomass using tropical timber as a negative emissions technology (NET): Sustainability assessment, comparison with other bio-based NETs and their potential in Malaysia. Sustainable Production and Consumption. https://doi.org/10.1016/j.spc.2025.06.017

Lau, H. C. (2022). Decarbonization roadmaps for ASEAN and their implications. Energy Reports, 8, 6000–6022. https://doi.org/10.1016/j.egyr.2022.04.047

Becken, S., Mackey, B., & Lee, D. S. (2023). Implications of preferential access to land and clean energy for Sustainable Aviation Fuels. Science of The Total Environment, 886, 163883. https://doi.org/10.1016/j.scitotenv.2023.163883

Bößner, S., Xylia, M., Bilbao, B., Indriani, S. N., Laub, M., Rahn, E., Virla, L. D., & Johnson, F. X. (2023). Capacity gaps in land-based mitigation technologies and practices: A first stock take. Land Use Policy, 134, 106888. https://doi.org/10.1016/j.landusepol.2023.106888

Svensson, J., Waisman, H., Vogt-Schilb, A., Bataille, C., Aubert, P.-M., Jaramilo-Gil, M., Angulo-Paniagua, J., Arguello, R., Bravo, G., Buira, D., Collado, M., De La Torre Ugarte, D., Delgado, R., Lallana, F., Quiros-Tortos, J., Soria, R., Tovilla, J., & Villamar, D. (2021). A low GHG development pathway design framework for agriculture, forestry and land use. Energy Strategy Reviews, 37, 100683. https://doi.org/10.1016/j.esr.2021.100683

Fernandes Andry, J., Tannady, H., Dwinoor Rembulan, G., & Edinata, A. (2023). Avocado Price Data Analysis Using Decision Tree. Salud, Ciencia Y Tecnología - Serie De Conferencias, 2, 568. https://doi.org/10.56294/sctconf2023568

Shahbaz, M., AlNouss, A., Ghiat, I., Mckay, G., Mackey, H., Elkhalifa, S., & Al-Ansari, T. (2021). A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling, 173, 105734. https://doi.org/10.1016/j.resconrec.2021.105734

Sovacool, B. K. (2023). Expanding carbon removal to the Global South: Thematic concerns on systems, justice, and climate governance. Energy and Climate Change, 4, 100103. https://doi.org/10.1016/j.egycc.2023.100103

Babamohammadi, S., Birss, A. R., Pouran, H., Pandhal, J., & Borhani, T. N. (2025). Emission control and carbon capture from diesel generators and engines: A decade-long perspective. Carbon Capture Science & Technology, 14, 100379. https://doi.org//10.1016/j.ccst.2025.100379

Moreno, J., Cobo, M., Barraza-Botet, C., & Sanchez, N. (2022). Role of low carbon emission H2 in the energy transition of Colombia: Environmental assessment of H2 production pathways for a certification scheme. Energy Conversion and Management: X, 16, 100312. https://doi.org/10.1016/j.ecmx.2022.100312

Sambodo, M. T., Silalahi, M., & Firdaus, N. (2024). Investigating technology development in the energy sector and its implications for Indonesia. Heliyon, 10(6), e27645. https://doi.org/10.1016/j.heliyon.2024.e27645

Solakivi, T., Paimander, A., & Ojala, L. (2022). Cost competitiveness of alternative maritime fuels in the new regulatory framework. Transportation Research Part D: Transport and Environment, 113, 103500. https://doi.org/10.1016/j.trd.2022.103500

Prussi, M., Weindorf, W., Buffi, M., Sánchez López, J., & Scarlat, N. (2021). Are algae ready to take off? GHG emission savings of algae-to-kerosene production. Applied Energy, 304, 117817. https://doi.org/10.1016/j.apenergy.2021.117817

Khalifa, R., Alherbawi, M., Elomri, A., & Al-Ansari, T. (2022). Alternative fuels’ blending model to facilitate the implementation of carbon offsetting and reduction Scheme for International Aviation. Fuel, 326, 124974. https://doi.org/10.1016/j.fuel.2022.124974

Low, S., Baum, C. M., & Sovacool, B. K. (2022a). Rethinking Net-Zero systems, spaces, and societies: “Hard” versus “soft” alternatives for nature-based and engineered carbon removal. Global Environmental Change, 75, 102530. https://doi.org/10.1016/j.gloenvcha.2022.102530

Low, S., Baum, C. M., & Sovacool, B. K. (2022b). Taking it outside: Exploring social opposition to 21 early-stage experiments in radical climate interventions. Energy Research & Social Science, 90, 102594. https://doi.org/10.1016/j.erss.2022.102594

Gendy, T. S., El-Salamony, R. A., Alrashed, M. M., Bentalib, A., Osman, A. I., Kumar, R., Fakeeha, A. H., & Al-Fatesh, A. S. (2024). Enhanced predictive optimization of methane dry reforming via ResponseSurface methodology and artificial neural network approaches: Insights using a novel nickel-strontium-zirconium-aluminum catalyst. Molecular Catalysis, 562, 114216. https://doi.org/10.1016/j.mcat.2024.114216

Cerchione, R., Morelli, M., Passaro, R., & Quinto, I. (2025). Balancing sustainability and circular justice: The challenge of the energy transition. Journal of Cleaner Production, 494, 144942. https://doi.org/10.1016/j.jclepro.2025.144942

Rupcic, L., Pierrat, E., Saavedra-Rubio, K., Thonemann, N., Ogugua, C., & Laurent, A. (2023). Environmental impacts in the civil aviation sector: Current state and guidance. Transportation Research Part D: Transport and Environment, 119, 103717. https://doi.org/10.1016/j.trd.2023.103717

Yang, F., Meerman, H., Zhang, Z., Jiang, J., & Faaij, A. (2022). Integral techno-economic comparison and greenhouse gas balances of different production routes of aromatics from biomass with CO2 capture. Journal of Cleaner Production, 372, 133727. https://doi.org/10.1016/j.jclepro.2022.133727

Goh, K. C., Kurniawan, T. A., AlSultan, G. A., Othman, M. H. D., Anouzla, A., Aziz, F., & Shafii, H. (2025). Innovative circular bioeconomy and decarbonization approaches in palm oil waste management: A review. Process Safety and Environmental Protection, 195, 106746. https://doi.org/10.1016/j.psep.2024.12.127

Kurniawan, T. A., Ali, M., Mohyuddin, A., Haider, A., Othman, M. H. D., Anouzla, A., & Alsultan, G. A. (2024). Innovative transformation of palm oil biomass waste into sustainable biofuel: Technological breakthroughs and future prospects. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2024.11.073

Mohd Idris, M. N., Leduc, S., Yowargana, P., Hashim, H., & Kraxner, F. (2021). Spatio-temporal assessment of the impact of intensive palm oil-based bioenergy deployment on cross-sectoral energy decarbonization. Applied Energy, 285, 116460.

Li, H., Mu, W., Huang, W., Torvanger, A., & Chen, T. (2025). Bioenergy utilization and greenhouse gas emission reduction: A global impact assessment. Renewable Energy, 250, 123115. https://doi.org/10.1016/j.renene.2025.123115

Mohd Idris, M. N., & Hashim, H. (2021). Integrating palm oil biomass waste utilization in coal-fired power plants for meeting near-term emission targets. Journal of Environmental Management, 296, 113118. https://doi.org/10.1016/j.jenvman.2021.113118

Chatterjee, S., Jeevanandham, S., Mukherjee, M., Vo, D.-V. N., & Mishra, V. (2021). Significance of re-engineered zeolites in climate mitigation – A review for carbon capture and separation. Journal of Environmental Chemical Engineering, 9(5), 105957. https://doi.org/10.1016/j.jece.2021.105957

Baidoo, E. B., Tulashie, S. K., Alale, E. M., Munumkum, C. A., Acquah, D., Agudah, P. Q., & Asante, P. A. (2025). Revolutionizing bioenergy production: a review on sustainable biomass feedstock. Biomass and Bioenergy, 201, 108113. https://doi.org/10.1016/j.biombioe.2025.108113

Martínez-Arce, A., O’Flaherty, V., & Styles, D. (2024). State-of-the-art in assessing the environmental performance of anaerobic digestion biorefineries. Resources, Conservation and Recycling, 207, 107660. https://doi.org/10.1016/j.resconrec.2024.107660

Chauhan, S., Solanki, P., Putatunda, C., Walia, A., Keprate, A., Kumar Bhatt, A., Kumar Thakur, V., & Kant Bhatia, R. (2025). Recent advancements in biomass to bioenergy management and carbon capture through artificial intelligence integrated technologies to achieve carbon neutrality. Sustainable Energy Technologies and Assessments, 73, 104123. https://doi.org//10.1016/j.seta.2024.104123

Borah, D., Rout, J., & Nooruddin, T. (2024). Chapter 16 - Phycoremediation and water reuse in bioenergy production from algae and cyanobacteria in relevance to sustainable development goals. In M. H. Dehghani, R. R. Karri, I. Tyagi, & M. Scholz (Eds.), Water, The Environment, and the Sustainable Development Goals (pp. 375–406). Elsevier. https://doi.org/10.1016/B978-0-443-15354-9.00003-7

Özen Da?, ?. T., Özm?hç?, S., & Büyükkamac?, N. (2024). Environmental impact analysis of different wastes to biohydrogen, biogas and biohytane processes. International Journal of Hydrogen Energy, 56, 1446–1463. https://doi.org/10.1016/j.ijhydene.2023.12.184

Shammi, M., & Akter, B. (2024). Chapter Fifteen - CO2 sequestration for conventional utilization and industrial application. In M. N. Vara Prasad, L. E. Erickson, F. C. Nunes, & B. S. Ramadan (Eds.), Decarbonization Strategies and Drivers to Achieve Carbon Neutrality for Sustainability (pp. 299–319). Elsevier. https://doi.org/10.1016/B978-0-443-13607-8.00011-0

Scheffran, J. (2024). Energy Production From Biomass and Sustainability. In M. R. Rahimpour (Ed.), Encyclopedia of Renewable Energy, Sustainability and the Environment (First Edition) (First Edition, pp. 277–292). Elsevier. https://doi.org/10.1016/B978-0-323-93940-9.00252-8

Awogbemi, O., & Kallon, D. V. Von. (2024). Recent advances in the application of nanomaterials for improved biodiesel, biogas, biohydrogen, and bioethanol production. Fuel, 358, 130261. https://doi.org/10.1016/j.fuel.2023.130261

Acen, C., Bamisile, O., Cai, D., Ukwuoma, C. C., Obiora, S., Huang, Q., Uzun Ozsahin, D., & Adun, H. (2024). The complementary role of carbon dioxide removal: A catalyst for advancing the COP28 pledges towards the 1.5 °C Paris Agreement target. Science of The Total Environment, 947, 174302. https://doi.org/10.1016/j.scitotenv.2024.174302

Das, D., Sharma, P. L., Paul, P., & Deb, D. (2025). Chapter 6 - Evolution of biofuel development as a source of sustainable bioenergy. In J. A. Parray, N. Singh, & D. Egamberdieva (Eds.), Genetic and Genome-Wide Microbial Insights: Bioenergy (pp. 81–100). Academic Press. https://doi.org/10.1016/B978-0-443-31556-5.00006-2

Kumar, V., & Sinha, A. R. (2025). Sustainable ethanol production: CO2 emission analysis and feedstock strategies through life cycle assessment. Energy for Sustainable Development, 88, 101775. https://doi.org/10.1016/j.esd.2025.101775

Ahmadipour, M., Ridha, H. M., Ali, Z., Zhining, Z., Ahmadipour, M., Othman, M. M., & Ramachandaramurthy, V. K. (2025). A comprehensive review on biomass energy system optimization approaches: Challenges and issues. International Journal of Hydrogen Energy, 106, 1167–1183. https://doi.org/10.1016/j.ijhydene.2025.02.027

Alsaleh, M., Abdul-Rahim, A. S., & Abdulwakil, M. M. (2021). The importance of worldwide governance indicators for transitions toward sustainable bioenergy industry. Journal of Environmental Management, 294, 112960. https://doi.org/10.1016/j.jenvman.2021.112960




DOI: https://doi.org/10.52088/ijesty.v5i3.1170

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Loso Judijanto

International Journal of Engineering, Science, and Information Technology (IJESTY) eISSN 2775-2674