Sentiment Analysis of Vidio Application Based on Reviews on Google Play Store Using Bidirectional Encoder Representations from the Transformers Method
Abstract
Sentiment analysis is a computational study that aims to process, extract, summarise, and analyse the information contained in the text so it can conclude the emotions and points of view given by the author from the text and share the emotional tendencies in the text through the subjective information contained in it. Vidio is a video streaming site that allows users to watch and enjoy various videos and other services, such as live chat and playing games over the internet, and broadcast them by live streaming and video on demand. The analysis process uses the Bidirectional Encoder Representations from Transformers (BERT) method to classify comments into positive, neutral, and negative sentiments using the Python programming language, and based on the results of the tests that have been carried out from the amount of comment data—as much as 6000 data with training data as much as 4019 data, validation data as many as 1154 data, and test data as many as 569 data—an accuracy result of 76%.
Keywords
Full Text:
PDFReferences
A. Nurdin, B.A.S. Aji, A. Bustamin, Z. Abidin, ”Perbandingan Kinerja Word Embedding Word2vec, Glove, Dan Fasttext Pada Klasifikasi Teks,” Jurnal Teknokompak, vol. 14, no.2, pp. 74-79, 2020.
M.F. Al-Shufi, dan A. Erfina, “Sentimen Analisis Mengenai Aplikasi Streaming Film Menggunakan Algoritma Support Vector Machine Di Play Store,” Sismatik, vol. 1, pp. 156-162, 2021.
Y. Goldberg, “Neural network methods for natural language processing,” Synthesis lectures on human language technologies, vol. 10, pp. 1-309, 2017.
D. Fimoza, “Analisis Sentimen Terhadap Film Indonesia dengan Pendekatan BERT,” Undergraduate Papers, Universitas Su-matera Utara, 2021
C.A. Putri, “Analisis Sentimen Review Film Berbahasa Inggris Dengan Pendekatan Bidirectional Encoder Representations from Transformers,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, pp. 181-193, 2020.
H.K. Putra, “Deteksi Penggunaan Kalimat Abusive Pada Teks Bahasa Indonesia Menggunakan Metode IndoBERT, Universitas Telkom, 2021.
E.A. Putra, “Implementasi BERT untuk Analisis Sentimen Terhadap Ulasan Aplikasi FLIP Berbahasa Indonesia,”, 2021.
F.V. Sari dan A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd. Id Menggunakan Metode Naive Bayes Classifier Ber-basis Konversi Ikon Emosi. Simetris, vol. 10, pp. 681-686, 2019.
B. Wilie, et.al., “IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding,” https://arxiv.org/abs/2009.05387 , 2020.
T. Wolf, et.a.l., “Transformers: State-of-the-art Natural Language Processing,” In Proceedings of the 2020 conference on empiri-cal methods in natural language processing: system demonstrations, pp. 38-45, 2020.
R. Refianti and N. Anggraeni, “Sentiment Analysis Using Convolutional Neural Network Method to Classify Reviews on Zoom Cloud Meetings Application Based on Reviews on Google Playstore,“ International Journal of Engineering, Science & Infor-mation Technology (IJESTY), Volume 3, No. 3, pp. 7-16, 2023.
R. Refianti, A.B. Mutiara, and R.A. Putra, “A Lexicon-Based Long Short-Term Memory (LSTM) Model for Sentiment Analysis to Classify Halodoc Application Reviews on Google Playstore,” Journal of Applied Data Sciences, Vol. 5, No. 1, pp. 146-157, Janu-ari 2024.
M.R. Ramli, H. Sulastri, R. Rianto, “Sentiment Analysis Of Student Opinion Related To Online Learning Using Naïve Bayes Classifier Algorithm And SVM With Adaboost On Twitter Social Media,” Telematika: Jurnal Informatika dan Teknologi Infor-masi 20 (2), pp. 187-201, 2023.
Z.F. Ramadhani and A.B. Mutiara, “Sentiment Analysis of Honkai: Star Rail Indonesian Language Reviews on Google Play Store Using Bidirectional Encoder Representations from Transformers Method,“ International Journal of Engineering, Science & In-formation Technology (IJESTY), Volume 3, No. 3, pp. 1-6, 2023.
R. Yunanto, E.P. Wibowo, Rianto, “A BERT Model to Detect Provocative Hoax,” Journal of Engineering Science and Technolo-gy 18 (5), pp. 2281-2297, 2023.
DOI: https://doi.org/10.52088/ijesty.v5i3.1124
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rina Refianti, Andrian Senjaya