Article Open Access

Smart Stego: A Web Application for Hiding Secret Data in Images with LSB and CNN

I Gede Totok Suryawan, Made Sudarma, I Ketut Gede Darma Putra, Anak Agung Kompiang Oka Sudana

Abstract


This study develops a web-based steganography model to insert the identity of artisans in the form of palmprint images into the image of gringsing ikat woven cloth as a medium for ownership authentication. The method used in the insertion process combines a Convolutional Neural Network and the Least Significant Bit. In contrast, extracting or re-introducing palmprint images from stego images is carried out using a CNN-based classification model. This system was tested with two scenarios; in the first scenario, one palmprint image was inserted into 26 different cloth motifs, while in the second scenario, one cloth motif was inserted into 99 different palmprint images. The test results showed that the system produced consistent confidence values for all cloth motifs in the first scenario. In contrast, in the second scenario, the system achieved an average confidence of 93.5% and a recognition accuracy of 87%. The developed application has proven to be efficient with a reduction in stego image size of up to 66% while maintaining the quality of the stego image, as well as a speedy average execution time of 0.15 seconds for insertion and 0.09 seconds for extraction. These findings prove that the developed steganography model can effectively insert and re-recognize identity images (palmprints) in woven cloth images and has the potential to be applied as an image-based craft product ownership verification system.


Keywords


Image Steganography, Convolutional Neural Network, Least Significant Bit, Deep Steganography

References


K. Muhammad, M. Sajjad, I. Mehmood, S. Rho, and S. W. Baik, “A novel magic LSB substitution method (M-LSB-SM) using multi-level encryption and achromatic component of an image,” Multimed. Tools Appl., vol. 75, no. 22, pp. 14867–14893, 2016, doi: 10.1007/s11042-015-2671-9.

L. Widyawati, I. Riadi, and Y. Prayudi, “Comparative Analysis of Image Steganography using SLT, DCT and SLT-DCT Algorithm,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 1, pp. 169–182, 2020, doi: 10.30812/matrik.v20i1.701.

J. Qin, Y. Luo, X. Xiang, Y. Tan, and H. Huang, “Coverless image steganography: A survey,” IEEE Access, vol. 7, pp. 171372–171394, 2019, doi: 10.1109/ACCESS.2019.2955452.

M. A. Hosen, S. H. Moz, S. S. Kabir, M. N. Adnan, and S. M. Galib, “In-depth exploration of digital image watermarking with discrete cosine transform and discrete wavelet transform,” Indones. J. Electr. Eng. Comput. Sci., vol. 33, no. 1, pp. 581–590, 2024, doi: 10.11591/ijeecs.v33.i1.pp581-590.

D. G. and K. S. K. A. R. Babu, R. R. Al-Fatlawy, K. Veeranjaneyulu, “Canonical Huffman Coding (CHC) - Discrete Wavelet Transform (DWT) Method for Image Steganography,” in 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), 2024, doi: 10.1109/ICICACS60521.2024.10498392.

M. R. and A. Sengupta, “Design Flow of Secured N-Point DFT Application Specific Processor Using Obfuscation and Steganography,” EEE Lett. Comput. Soc., vol. 3, no. 1, pp. 13–16, 2020, doi: 10.1109/LOCS.2020.2973586.

Hosen et al, “In-depth exploration of digital image watermarking with discrete cosine transform and discrete wavelet transform,” Indones. J. Electr. Eng. Comput. Sci., 2024, doi: 10.11591/ijeecs.v33.i1.pp581-590.

S. and Rahayu, “Watermarking using DCT and DWT on Pneumonia images,” J. Appl. Intell. Syst., 2023, doi: doi:10.33633/jais.v8i3.8914.

G. et Al, “Discrete wavelet transform-based color image watermarking using uncorrelated color space and artificial bee colony,” Int. J. Comput. Intell. Syst., 2015, doi: 10.1080/18756891.2015.1001958.

Rana et al, “Transform Domain Image Watermarking using DCT, DWT and SVD,” Int. J. Innov. Technol. Explor. Eng., 2019, doi: 10.35940/ijitee.l2733.1081219.

S. K. Ghosal, S. Mukhopadhyay, S. Hossain, and R. Sarkar, “Application of Lah transform for security and privacy of data through information hiding in telecommunication,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 2, pp. 1–20, 2021, doi: 10.1002/ett.3984.

S. Mukhopadhyay, S. Hossain, S. K. Ghosal, and R. Sarkar, “Secured image steganography based on Catalan transform,” Multimed. Tools Appl., vol. 80, no. 9, pp. 14495–14520, 2021, doi: 10.1007/s11042-020-10424-4.

M. A. Aslam et al., “Image Steganography using Least Significant Bit (LSB)-A Systematic Literature Review,” Proc. 2022 2nd Int. Conf. Comput. Inf. Technol. ICCIT 2022, no. June 2023, pp. 32–38, 2022, doi: 10.1109/ICCIT52419.2022.9711628.

Z. Qu, H. Sun, and M. Zheng, “An efficient quantum image steganography protocol based on improved EMD algorithm,” Quantum Inf. Process., vol. 20, no. 2, pp. 1–29, 2021, doi: 10.1007/s11128-021-02991-8.

Z. S. Younus and M. K. Hussain, “Image steganography using exploiting modification direction for compressed encrypted data,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 2951–2963, 2022, doi: 10.1016/j.jksuci.2019.04.008.

H. S. Leng, J. F. Lee, and H. W. Tseng, “A high payload EMD-based steganographic method using two extraction functions,” Digit. Signal Process. A Rev. J., vol. 113, p. 103026, 2021, doi: 10.1016/j.dsp.2021.103026.

S. Prasad and A. K. Pal, “An RGB colour image steganography scheme using overlapping block-based pixel-value differencing,” R. Soc. Open Sci., vol. 4, no. 4, 2017, doi: 10.1098/rsos.161066.

A. K. Sahu, G. Swain, M. Sahu, and J. Hemalatha, “Multi-directional block based PVD and modulus function image steganography to avoid FOBP and IEP,” J. Inf. Secur. Appl., vol. 58, no. March, p. 102808, 2021, doi: 10.1016/j.jisa.2021.102808.

and L. M. Nashat, Dalia, “An Efficient Steganographic Technique for Hiding Data,” J. Egypt. Math. Soc., vol. 10, no. 1, 2019.

I. N. and K. A. T. Ejidokun, O. O. Omitola, “Implementation and Comparative Analysis of Variants of LSB Steganographic Method,” in 2022 30th Southern African Universities Power Engineering Conference (SAUPEC), 2022, doi: https://doi.org/10.1109/SAUPEC55179.2022.9730643.

and M. W. A. Aslam, Muhammad Adnan, Muhammad Rashid, Farooque Azam, Muhammad Abbas, Yawar Rasheed, Saud S. Alotaibi, “Image Steganography Using Least Significant Bit (LSB)-A Systematic Literature Review,” in 2nd International Conference on Computing and Information Technology, ICCIT, 2022, doi: https://doi.org/10.1109/ICCIT52419.2022.9711628.

and H. A. L. Al-Momin, Mohammed, Issa Ahmed Abed, “A New Approach for Enhancing LSB Steganography Using Bidirectional Coding Scheme,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, 2019, doi: https://doi.org/10.11591/ijece.v9i6.pp5286-5294.

and S. A. Alanzy, May, Razan Alomrani, Bashayer Alqarni, “Image Steganography Using LSB and Hybrid Encryption Algorithms,” Appl. Sci., vol. 13, no. 21, 2023, doi: https://doi.org/10.3390/app132111771.

N. S. & S. M. A. Sreenidhi, B. Shruti, Ambati Divya, “Highly Secure Lsb-Based Image Steganography with Four-Factor Security,” Intell. Comput. Syst. Appl., 2024, doi: https://doi.org/https://doi.org/10.1007/978-981- 97-5412-0_22.

I. W. M. A. P. I Gede Totok Suryawan, “Convolutional Neural Network for Cataract Clasification Using Primary Dataset,” in 2024 9th International Conference on Business and Industrial Research (ICBIR), 2024, doi: 10.1109/ICBIR61386.2024.10875946.

I. G. T. Suryawan Udayana, I. Putu Agus Eka Darma, “A deep learning approach for COVID-19 detection via X-ray image with image correction method,” Int. J. Eng. Emerg. Technol., vol. 5, no. 2, pp. 111–115, 2020, doi: 10.24843/IJEET.2020.v05.i02.p018.

I. G. T. Suryawan, I. P. Agus, and E. Darma, “Optimasi Convolutional Neural Network Untuk Deteksi Covid-19 Pada X-Ray Thorax Berbasis Dropout,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, 2022, doi: 10.25126/jtiik.202295143.

I. K. N. P. Suryawan, I Gede Totok, Anak Agung Ngurah Mertha Jaya, da Bagus Ary Indra Iswara, I Putu Mahesa Kama Artha, “Balinese Script Handwriting Recognition Using Convolutional Neural Network,” in 2024 IEEE International Symposium on Consumer Technology (ISCT), 2024, doi: 10.1109/ISCT62336.2024.10791286.

A. A. K. O. S. I Gede Totok Suryawan, Made Sudarma, I Ketut Gede Darma Putra, “Classifying Ikat Gringsing Woven Cloth Motifs Using Convolutional Neural Network,” in 2023 7th International Conference on New Media Studies (CONMEDIA), 2024, doi: 10.1109/CONMEDIA60526.2023.10428579.




DOI: https://doi.org/10.52088/ijesty.v5i4.1008

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 I Gede Totok Suryawan, Made Sudarma, I Ketut Gede Darma Putra, Anak Agung Kompiang Oka Sudana

International Journal of Engineering, Science, and Information Technology (IJESTY) eISSN 2775-2674