Information and Communication Technology Competencies Clustering For Students For Vocational High School Students Using K-Means Clustering Algorithm

Muhammad Faisal, Nurdin Nurdin, Fajriana Fajriana, Zahratul Fitri

Abstract


The k-Means Clustering algorithm is intended to partition data into one or more groups, where data that has similarities in one group and data has differences in another. Information and Communication Technology (ICT) Competency data clustering in educational units is considered necessary to facilitate educational facilitation based on the differences in student abilities, determine advanced ICT guidance groups and become a reference in determining the place of Industrial Work Practices (Prakerin). This study aims to find out how the K-Means Clustering algorithm can be applied in clustering the ICT competencies of students at the State Vocational High School (SMK) 3 Lhokseumawe. The benefits generated in this study are in the form of visualization of data clustering that can help teachers and school management in formulating ICT policies at SMKN 3 Lhokseumawe. The data used in this study is the Information and Communication Technology (ICT) competency test score data for the 2021/2022 academic year. The data was obtained through a competency test process that refers to the Minister of Education and Culture Regulation Number 45 of 2015 concerning the Role of ICT/KKPI Teachers in the Implementation of the 2013 Curriculum where ICT competence includes the skills to search, store, process, present and disseminate data and information. Data processing in this study uses the K-means Clustering method and the RapidMiner application. Data processing using the RapidMiner application starts with data preparation, determining the number of clusters, and configuring the method. This study uses 3 (three) cluster configurations, namely the Very Competent, Competent, and Less Competent clusters. Testing data processing using the RapidMiner application resulted in 80 (eighty) students in cluster_0 with a Very Competent rating, 64 (sixty-four) students in cluster_1 with a Competent rating, and 10 (ten) students in cluster_2 with a Less Competent rating.

Keywords


Data Mining, Clustering, K Means, Information and Communication Technology

Full Text:

PDF

References


Z. Fitri and E. Utaminingsih, “Penerapan Metode Computational Thinking Pada Kurikulum Aceh Untuk Mencapai Kognitif,†J. MathEducation Nusant., vol. 4, no. 1, pp. 60–73, 2021.

Yusrizal, “SURVEY PENGGUNAAN TEKNOLOGI INFORMASI DAN KOMUNIKASI DI WILAYAH PERBATASAN SURVEY,†J. Teknol. Inf. dan Komun. Inf. dan Komun., 2016.

H. Chung, “Sikap guru Bahasa Melayu terhadap penggunaan teknologi maklumat dan kKomunikasi (ICT) dalam pengajaran di Sekolah-sekolah Rendah di Bintulu, Sarawak,†J. Pendidik. Malaysia, 2010.

R. Siva Sankara Raju, A. D, and P. Thimothy, “Determination of Stress and Deformations Analysis on LPG Steel Cylinder,†Int. J. Eng. Res. Appl., vol. 3, no. 1, 2013.

Fajriana, “Pemanfaatan Teknologi Informasi Untuk Meningkatkan Kualitas Pembelajaran,†TECHSI, vol. 9, 2017.

Z. Vahedi, L. Zannella, and S. C. Want, “Students’ use of information and communication technologies in the classroom: Uses, restriction, and integration,†Act. Learn. High. Educ., vol. 22, no. 3, 2021, doi: 10.1177/1469787419861926.

W. M. Al-Rahmi, A. I. Alzahrani, N. Yahaya, N. Alalwan, and Y. Bin Kamin, “Digital communication: Information and communication technology (ICT) usage for education sustainability,†Sustain., vol. 12, no. 12, 2020, doi: 10.3390/su12125052.

Z. Fitri, M. Ula, and M. Z. Akbar, “Penerapan Media Pembelajaran Interaktif Berbasis Blended Untuk Meningkatkan Kualitas Belajar Siswa Di Smkn 3 Lhokseumawe,†J. Sist. Inf. ISSN, vol. 1, no. Interaktif Learning, pp. 1–6, 2018.

Nurdin, N. Putri, M. Uci, Al-Kautsar, H. Aidilof, and Bustami, “Implementation of Fuzzy C-Means to Determine Student Satisfaction Levels in Online Learning,†Sistemasi, vol. 11, no. 1, p. 121, 2022, doi: 10.32520/stmsi.v11i1.1638.

Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang dengan Menggunakan Metode Apriori pada Supermarket Sejahtera Lhoksumawe,†TECHSI, vol. 6, pp. 77–80, 2015.

R. Hutagalung and A. Gustomo, “Workload Analysis for Planning Needs of Employees in The Corporate Administration Unit PT Timah (Persero) Tbk.,†Indones. J. Bus. Adm., vol. 2, no. 19, pp. 2290–2297, 2013.

Nurdin, M. Suhendri, Y. Afrilia, and Rizal, “Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naive Bayes Classifier (NBC),†Sistemasi, vol. 10, no. 2, p. 268, 2021, doi: 10.32520/stmsi.v10i2.1193.

R. Karim, M. A. Azizi, R. M. Umar, and N. Nurany, “KAJIAN HIDROLOGI DAN SISTEM PENANGGULANGAN AIR HUJAN PADA PENAMBANGAN BIJIH NIKEL (STUDI KASUS PT. BHAKTI PERTIWI NUSANTARA DI SITE SEPO KECAMATAN WEDA UTARA KABUPATEN HALMAHERA TENGAH PROVINSI MALUKU UTARA),†Pros. Temu Profesi Tah. PERHAPI, vol. 1, no. 1, 2020, doi: 10.36986/ptptp.v1i1.117.

H. Miftahul, “Algoritma K-Means Untuk Klasterisasi Tugas Akhir Mahasiswa Berdasarkan Keahlian,†J. Sistim Inf. dan Teknol., vol. 1, no. 3, pp. 25–30, 2021, doi: 10.35134/jsisfotek.v1i3.6.

B. Idrizi and M. Kurteshi, “Web System for Online and Onsite Usage of Geoinformation by Surveying Sector in Kosovo. Case Study: Ferizaj Municipality,†Geosfera Indones., vol. 4, no. 3, 2019, doi: 10.19184/geosi.v4i3.13469.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,†J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.

Z. NÉMETOVÃ, S. KOHNOVÃ, and R. MARKOVÃ, “Comparison of two approaches for an estimation of the mean annual flood at ungauged sites in slovakia,†Pollack Period., vol. 15, no. 2, 2020, doi: 10.1556/606.2020.15.2.12.

S. Surohman, L. Fabrianto, F. Riza, and N. M. Faizah, “Korelasi Antara Profil dan Nilai Akademis Siswa dengan Menggunakan Algoritma K-Means,†J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 4, p. 845, 2021, doi: 10.25126/jtiik.2021843034.

S. Oktarian, S. Defit, and Sumijan, “Clustering Students’ Interest Determination in School Selection Using the K-Means Clustering Algorithm Method,†J. Inf. dan Teknol., vol. 2, pp. 68–75, 2020, doi: 10.37034/jidt.v2i3.65.

A. Teleman et al., “Altered Growth and Cell Walls in a of Arabidopsis Fucose-Deficient Mutant,†Plant Physiol., 2012, doi: 10.1104/pp.110.160051.

B. Rahmat C.T.I. et al., “Implemetasi k-means clustering pada rapidminer untuk analisis daerah rawan kecelakaan,†Semin. Nas. Ris. Kuantitatif Terap. 2017, 2017.

F. L. Sibuea, A. Sapta, S. Informasi, and S. Royal, “Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustering,†J. Teknol. dan Sist. Inf., vol. IV, no. 1, 2017.




DOI: https://doi.org/10.52088/ijesty.v2i3.318

Article Metrics

Abstract view : 51 times
PDF - 40 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Muhammad Faisal, Nurdin Nurdin, Fajriana Fajriana, Zahratul Fitri

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674