Comparison of Triple Exponential Smoothing and ARIMA in Predicting Cryptocurrency Prices

Adi Prasetyo, Nurdin Nurdin, Hafizh Al Kautsar Aidilof

Abstract


Cryptocurrency has emerged as a prominent digital asset over the past decade, but its high price volatility presents significant challenges for investors. This study evaluates and compares the effectiveness of the Triple Exponential Smoothing (TES) and Autoregressive Integrated Moving Average (ARIMA) methods in forecasting the prices of five major cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Solana (SOL), and Ripple (XRP). TES models trends and seasonality in time series data, while ARIMA captures autoregressive patterns and moving averages. The dataset is split into 80% for training and 20% for testing, with performance evaluated using Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE). TES outperforms ARIMA in predicting Bitcoin and Binance Coin, achieving MAPE values of 10.38% and 13.81%, and RMSE values of 3,985.55 and 41.28, respectively. However, ARIMA shows better performance for Ethereum, Solana, and Ripple, with MAPE ranging from 8.78% to 32.84% and RMSE between 0.08 and 204.59. Notably, Ethereum has the lowest MAPE at 8.78%, while Ripple exhibits the smallest RMSE at 0.08. These findings suggest that TES is more suitable for cryptocurrencies with relatively stable price patterns, while ARIMA is better adapted to forecasting highly volatile assets. This research underscores the importance of selecting forecasting models based on the specific characteristics of each cryptocurrency

Keywords


Cryptocurrency Price, Triple Exponential Smoothing, Autoregressive Integrated Moving Average, Time Series Data

Full Text:

PDF

References


Mudassir, S. Bennbaia, D. Unal, and M. Hammoudeh, “Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach,” Neural Comput Appl, Jul. 2020, doi: 10.1007/s00521-020-05129-6.

Nurdin, Balqis, and Z. Yunizar, “Application of Triple Exponential Smoothing Method to Predict LQ45 Saham Stock Price,” Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, vol. 8, no. 2, p. 40, Nov. 2022, doi: http://dx.doi.org/10.24014/coreit.v8i2.14935.

A. Hamdhi, “Investor Kripto di Indonesia Mencapai 17,25 Juta Orang pada April 2023.” Accessed: Mar. 24, 2024. [Online]. Available: https://investasi.kontan.co.id/news/investor-kripto-di-indonesia-mencapai-1725-juta-orang-pada-april-2023/

R. Irmanita, S. S. Prasetiyowati, and Y. Sibaroni, “Classification of Malaria Complication Using CART (Classification and Regression Tree) and Naïve Bayes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 10–16, Feb. 2021, doi: 10.29207/resti.v5i1.2770.

D. Setyowati, “Survei: Jumlah Generasi Muda Berinvestasi Kripto Melonjak 2 Kali Lipat.” Accessed: Mar. 24, 2024. [Online]. Available: https://katadata.co.id/digital/fintech/6205e94e9dbab/survei-jumlah-generasi-muda-berinvestasi-kripto-melonjak-2-kali-lipat

R. Adcock and N. Gradojevic, “Non-fundamental, non-parametric Bitcoin forecasting,” Physica A: Statistical Mechanics and its Applications, vol. 531, p. 121727, Oct. 2019, doi: 10.1016/j.physa.2019.121727.

M. Zanardi and H. Jaen, “Application Of Triple Exponential Smoothing Method For Predicting The Price Movement Of Cryptocurrency Ethereum,” 2023. [Online]. Available: https://bestijournal.org

Moch Farryz Rizkilloh and Sri Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 25–31, Feb. 2022, doi: 10.29207/resti.v6i1.3630.

D. Ayu Rezaldi and Sugiman, “Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 4, pp. 611–620, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

Y. Baitur Roziqoh, M. Syafriadi, and Sugiyanta, “Forecasting Of Covid–19 With Autoregressive Integrated Moving Average (Arima) Method In East Java Province,” Jurnal Berkala Epidemiologi, vol. 11, no. 2, pp. 160–169, May 2023, doi: 10.20473/jbe.v11i22023.160-169.

F. N. Hayati, M. Silfiani, and D. Nurlaily, “Perbandingan Metode Arima, Dan Triple Exponential Smoothing Pada Studi Kasus Data Ekspor Non Migas Di Kalimantan Timur,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol. 1, no. 2, 2022, doi: 10.20885/snati.v1i2.10.

Y. R. Madhika, Kusrini, and T. Hidayat, “Gold Price Prediction Using the ARIMA and LSTM Models,” Sinkron, vol. 7, no. 3, pp. 1255–1264, Jul. 2023, doi: https://doi.org/10.33395/sinkron.v8i3.12461.

K. Murray, A. Rossi, D. Carraro, and A. Visentin, “On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles,” Forecasting, vol. 5, no. 1, pp. 196–209, 2023, doi: 10.3390/forecast5010010.

M. Dritsaki and C. Dritsaki, “Comparison of the Holt-Winters Exponential Smoothing Method with ARIMA Models: Forecasting of GDP per Capita in Five Balkan Countries Members of European Union (EU) Post COVID,” Modern Economy, vol. 12, no. 12, pp. 1972–1998, 2021, doi: 10.4236/me.2021.1212104.

K. Kashtanov, A. Kashevnik, and N. Shilov, “Using Triple Exponential Smoothing and Autoregressive Models to Mining Equipment Details Sales Forecast,” 2022, pp. 506–521. doi: 10.1007/978-3-030-93715-7_36.

K. P. Fourkiotis and A. Tsadiras, “Applying Machine Learning and Statistical Forecasting Methods for Enhancing Pharmaceutical Sales Predictions,” Forecasting, vol. 6, no. 1, pp. 170–186, 2024, doi: 10.3390/forecast6010010.

Nurdin, Fajriana, Maryana, and A. Zanati, “Information System for Predicting Fisheries Outcomes Using Regression Algorithm Multiple Linear,” Journal Of Informatics And Telecommunication Engineering, vol. 5, no. 2, pp. 247–258, Jan. 2022, doi: 10.31289/jite.v5i2.6023.

D. Abdullah, Fajriana, C. I. Erliana, M. Chaizir, and A. Putra, “A solution to reduce the environmental impacts of earthquakes: Web GIS-based forecasting,” Caspian Journal of Environmental Sciences, vol. 21, no. 2, pp. 361–373, Apr. 2023, doi: 10.22124/CJES.2023.6514.

Ummarrazai and Nurdin, “Peramalan Jumlah Keuntungan Mie Instan Pada Sumber Rezeki Kota Lhokseumawe Menggunakan Metode Triple Exponential Smooting,” Jurnal Sistem Informasi, vol. 1, no. 2, pp. 185–218, 2020.

M. Elsaraiti and A. Merabet, “A comparative analysis of the arima and lstm predictive models and their effectiveness for predicting wind speed,” Energies (Basel), vol. 14, no. 20, Oct. 2021, doi: 10.3390/en14206782.

A. N. M. F. Faisal, A. Rahman, M. T. M. Habib, A. H. Siddique, M. Hasan, and M. M. Khan, “Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of Bangladesh,” Results in Engineering, vol. 13, p. 100365, 2022, doi: https://doi.org/10.1016/j.rineng.2022.100365.

W. Lu, J. Li, J. Wang, and L. Qin, “A CNN-BiLSTM-AM method for stock price prediction,” Neural Comput Appl, vol. 33, no. 10, pp. 4741–4753, 2021, doi: 10.1007/s00521-020-05532-z.




DOI: https://doi.org/10.52088/ijesty.v4i4.577

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Adi Prasetyo, Nurdin, Hafizh Al Kautsar Aidilof

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674