

Student Learning Style Decision-Making System Using the Multi-Attribute Utility Theory Method at SMA Negeri 1 Jangka

Munawarah*, Wahyu Fuadi, Hafizh Al Kautsar Aidilof

Department of Informatics, Faculty of Engineering, Universitas Malikussaleh, Aceh, Indonesia

*Corresponding author Email: munawarah.190170025@mhs.unimal.ac.id

The manuscript was received on 22 June 2024, revised on 25 October 2024, and accepted on 23 February 2025, date of publication 8 April 2025 Abstract

Education plays a vital role in shaping individual development and national progress. One key factor influencing learning effectiveness is students' learning styles, which determine how individuals absorb, organize, and process information. Understanding these differences is crucial for designing effective teaching methods. This research develops a Decision Support System (DSS) to determine student learning styles at SMA Negeri 1 Jangka using the Multi-Attribute Utility Theory (MAUT) method. MAUT is chosen for its ability to evaluate multiple criteria, convert them into numerical values, and systematically identify the most suitable learning approach. The alternatives in this study include Project Based Learning (PBL), Problem-Based Learning (PrBL), Inquiry-Based Learning (IBL), Discovery Learning (DL), and Contextual Teaching and Learning (CTL). The MAUT analysis considers five criteria: student activeness, material understanding, collaboration, initiative and creativity, and teacher-student communication. The research stages include literature study, data collection, system and database design, MAUT implementation, and system evaluation. The results, based on MAUT calculations, show that Inquiry-Based Learning (IBL) scores the highest at 13.611, followed by Discovery Learning (DL) at 13.018, Problem-Based Learning (PrBL) at 12.975, Contextual Teaching and Learning (CTL) at 12.929, and Project Based Learning (PBL) at 12.558. This system assists educators in designing personalized learning strategies that align with students' strengths. Leveraging data-driven analysis enhances education quality, fosters a student-centred learning environment, and improves academic performance and lifelong learning habits.

Keywords: Learning Style, Decision Support System, MAUT, Learning, Education.

1. Introduction

Education plays an essential role in individual development and national progress. One factor influencing learning effectiveness is learning style [1], which differs in each individual. Finding the right learning style influences learning success [2], so students must learn how to achieve learning objectives optimally [3]. However, in Indonesia, challenges in the distribution and quality of education are still obstacles, including applying effective learning methods following student learning styles [4].

To overcome this problem, a decision support system (DSS) is needed to determine the most suitable learning style for students [5]. One method that can be used in SPK is Multi-Attribute Utility Theory (MAUT) [6], which allows decision-making based on the direct evaluation of various criteria [7]. This method converts important factors into numerical values from 0 to 1, which facilitates analyzing and selecting the optimal decision [8].

This research aims to develop a Student Learning Style Decision Making System using the MAUT method at SMA Negeri 1 Jangka. This system is expected to help students recognize their learning styles and support educators in developing learning strategies that are more effective and follow the characteristics of each student.

2. Literature Review

2.1. Data Mining

Information technology development has generated large databases and vast amounts of data in various areas [9]. Multiple researchers have laid forth several definitions of data mining. Some have defined data mining as discovering practical or actionable knowledge in large-scale data [10]. The amount of data in the world and our lives seems ever-increasing, and there's no end to it. We are overwhelmed with data. Today, Computers make it too easy to save things [11]. Data mining is described as sifting massive data sets kept in storage

using pattern recognition techniques such as statistical and mathematical approaches to discover new relevant correlations, patterns, and trends [12]. A recommendation system is an intelligent system that uses data mining and machine learning techniques to provide personalized recommendations based on user behaviour and preferences. The basic principles of recommendation systems include data collection, feature extraction, model training and prediction, and generating recommendation results[13].

2.2. Decision Support System

Decision-Making System (SDM) is part of a computer-based information system designed to assist decision-making [5]. SPK presents valuable information that helps decision-makers choose the best alternative based on several predetermined criteria [14]. This system helps solve complex problems by providing data-based analysis and specific models [15]. Decision-making systems consist of several main components, namely:

- 1. Database Management Subsystem, which functions to manage and store data used in decision-making.
- 2. The model Management Subsystem is used to apply mathematical models to data processing.
- 3. Software System/User Interface Subsystem enables interaction between the user and the system.
- 4. The Knowledge Component contains rule-based or experience-based knowledge that can improve the system's effectiveness.

2.3. Multi-Attribute Utility Theory

Multi-Attribute Utility Theory (MAUT) is one of the methods used in decision support systems to evaluate various alternatives based on several predetermined attributes or criteria [16]. This method converts various interests into numerical values with a scale of 0-1, where zero is the worst and one is the best [7].

The evaluation process with the MAUT method includes the following steps:

1. Create a decision framework by defining the problem.

- 2. Generate alternatives that may be able to solve the problem.
- 3. List all aspects that affect the decision.
- 4. Give weight to each element. The weight should reflect how important these aspects are to the problem.
- 5. Also, give the weight of the alternatives. For each alternative, determine how satisfactory it is against each element.
- 6. Process the evaluation of each alternative on the existing aspects to get a decision. For the calculation, the formula is used:

$Vx = \sum_{i=1}^{n} W_i X_{i i} \dots $

Definition:

= Overall	Assessment of the xt	h alternative	
D 1 /	· 1 / C· ·/ ·		

- = Relative weight of i criterion
- vi(x) = Assessment of the results of the i criterion for the x alternative
- i = Index to indicate criteria n = number of criteria
- n = Number of elements.

 $\sum_{i=1}^{n} W_i = 1.....(2)$

Definition:

wi`	= Relative weight of I criterion
i	= index to indicate criteria
n	= Number of criteria

 $U(X) = \frac{x - x_{i-}}{\sum_{i \in T \neq i}}$ (3)

Definition:

Calculating the normalized Utility value matrix for each alternative according to its attributes.

- (x) = The utility value of each criterion of the x alternative
- x = Criteria assessment of each x alternative
- xi The lowest score of the i criterion across all alternatives
- xi + = The highest score of the i criterion across all alternatives

2.4. Student Learning Style

Learning style is how individuals absorb, organize, and process the information received [17]. A person's learning style affects the effectiveness of the learning process and the achievement of learning outcomes [8]. In this study, there are five alternative learning methods analyzed, namely:

- 1. Project-Based Learning (PBL): A project-based learning model emphasizing in-depth topic exploration.
- 2. Problem-based Learning (PBL) is a method that uses real cases as learning materials to improve students' analytical skills.
- 3. Inquiry-based Learning (IBL) is an approach that involves students in the process of investigation and discovery.
- 4. Discovery Learning (DL): A method that encourages students to discover learning concepts independently.
- 5. Contextual Teaching and Learning (CTL): Real-life context-based learning to enhance student understanding

3. Research Method

Data collection in this study was conducted through two main sources, namely primary data and secondary data. Primary data was obtained through direct observation and interviews with teachers and students at SMA Negeri 1 Jangka to identify factors influencing learning styles, such as student activeness, material understanding, collaboration skills, creativity, and teacher communication. Meanwhile, secondary data was obtained from relevant journals, books, and previous research as the theoretical basis for this research. Furthermore, system design uses the Unified Modeling Language (UML) to describe the system workflow systematically, and database design uses MySQL Workbench to store student information, criteria, and evaluation results. Implementing the Multi-Attribute Utility Theory (MAUT) method in this system involves several stages, from determining criteria and weights, matrix normalization, calculating utility values, and ranking alternative learning styles[18]. The results of the MAUT calculation are displayed as a report that provides recommendations for the most suitable learning style for students based on predetermined criteria[19]. Thus, this system is expected to be a tool in decision-making to determine a more effective learning method at SMA Negeri 1 Jangka.

4. Results and Discussion

This section describes the research results and provides further explanation of the study. To give a more precise understanding, the research results will be explained in more detail in the following sub-section

4.1. Multi-Attribute Utility Theory (MAUT) Method Calculation

The following is the initial data from determining the learning styles of students at SMA Negeri 1 Jangka: 1. Determine criteria and criteria weights The following is the initial data from determining the learning styles of students at SMA Negeri 1 Jangka:

No	Code	able 1. Criteria and Criteria Weight of MAUT Met Criteria Name	Weight
1.	C1	Student Activity	0,15
2.	C2	Student Comprehension	0,35
3.	C3	Collaboration and Teamwork Skills	0,15
4.	C4	Initiative and Creativity	0,5
5.	C5	Teacher-to-Student Communication	0,15
		Total	1

To explain the calculation of the MAUT algorithm, the author uses mathematics subjects with two discussion topics, namely trigonometry and quadratic equations. The abbreviated terms in the model column in the table that will be presented next are as follows: PBL: Problem-Based Learning

PJBL: Project Based Learning IBL: Inquiry-Based Learning DL: Discovery Learning

CTL: Contextual Learning

2. Alternative Data

The following is alternative data from each class that will be calculated.

Table 2. Math score on trigonometry topic for class 1A								
Name	Topic	Model	C1	C2	C3	C4	C5	
Amran Wali	Trigonometry	PBL	80	78	100	77	96	
Arinal Khaira	Trigonometry	PBL	93	76	93	100	84	
Azril Ilham	Trigonometry	PBL	81	74	77	78	84	
Salman Alfarisi	Trigonometers	PBL	74	76	88	97	74	

Table 3. Mathematics Score of Quadratic Equation Topic Class 1A									
Name	Topic	Model	C1	C2	C3	C4	C5		
Amran Wali	Quadratic Equation	IBL	70	100	98	70	78		
Arinal Khaira	Quadratic Equation	IBL	70	91	91	85	84		
Azril Ilham	Quadratic Equation	IBL	87	99	71	79	82		
Salman Alfarisi	Quadratic Equation	IBL	74	76	88	97	74		

Table 4. Grade 1B Trigonometry Topic Math Score

Name	Topic	Model	C1	C2	C3	C4	C5
Amelia Putri	Trigonometers	DL	86	87	82	77	97
Aura Humaira	Trigonometers	DL	83	97	96	70	81
Badratun Nafis	Trigonometers	DL	82	93	96	84	80
Saski	Trigonometers	DL	80	84	80	94	89

Table 5. Grade 1B Trigonometry Topic Math Score

Name	Topic	Model	C1	C2	C3	C4	C5
Amelia Putri	Quadratic Equation	PBL	98	70	78	87	80
Aura Humaira	Quadratic Equation	PBL	91	85	84	99	80
Badratun Nafis	Quadratic Equation	PBL	71	79	82	82	96
Saski	Quadratic Equation	PBL	78	87	98	88	79

Table 6. Math score of Trigonometry Topic Class 2A							
Name	Topic	Model	C1	C2	C3	C4	C5
Askiya Ulhaqqi	Trigonometers	PJBL	71	80	96	100	84
Eza Saputra	Trigonometers	PJBL	96	73	92	71	91
Fadhlur Rahman	Trigonometers	PJBL	83	77	77	72	97
Yusmandar	Trigonometers	PJBL	96	77	92	70	99

Table 6 Math с**т** . T

Table 7. Mathematics score of Quadratic Equation Topic Class 2A
--

Name	Topic	Model	C1	C2	C3	C4	C5
Askiya Ulhaqqi	Quadratic Equation	CTL	100	84	88	98	97
Eza Saputra	Quadratic Equation	CTL	71	91	93	72	100
Fadhlur Rahman	Quadratic Equation	CTL	72	97	82	83	82
Yusmandar	Quadratic Equation	CTL	74	76	88	97	74

Table 8.	Grade 2B Trigono	ometry 10	pic Ma	ath Sco	re		
Name	Topic	Model	C1	C2	C3	C4	C5
Ahmad Thairan Ababil	Trigonometry	CTL	92	74	72	71	78
Ajirna	Trigonometry	CTL	100	100	100	70	78
Akramul Ikram	Trigonometry	CTL	94	75	77	92	84
Zulfakar	Trigonometers	CTL	77	85	98	79	82

Table & Grade 2P Trigonometry Tonia Math Sacra

Table 9. Mathematics score of Quadratic Equation Topic Class 2B

Name	Topic	Model	C1	C2	C3	C4	C5
Ahmad Thairan Ababil	Quadratic Equation	PJBL	97	89	88	79	74
Ajirna	Quadratic Equation	PJBL	92	79	82	87	97
Akramul Ikram	Quadratic Equation	PJBL	98	91	73	81	99
Zulfakar	Quadratic Equation	PJBL	74	76	88	97	74

3. Convert matrix values to decimal.

Suppose Amran Wali, a student in class 1A, has a math score on trigonometry with a student engagement score of 80. Then, multiply the score by 0.01 to convert the score to decimal form. This is applied to all grades.

4. Find the minimum and maximum values of each criterion for normalization purposes.

Table 10. Min and Max Score of Math Trigonometry Topic 1A						
Description	C1	C2	C3	C4	C5	
xi -	0.73	0.71	0.7	0.7	0.7	
xi +	0.97	0.96	1	1	1	
m 11 44 1.C			·			

Table 11. Min and Max Score of Mathematics Topic Quadratic Equation 1A						
Description	C1	C2	C3	C4	C5	
xi -	0.7	0.73	0.7	0.7	0.74	
xi +	1	1	0.98	1	1	

Table 12. Min and Max Score of Math Trigonometry Topic 1B						
Description	C1	C2	C3	C4	C5	
xi -	0.76	0.7	0.72	0.7	0.7	
xi +	0.98	1	1	0.99	1	

Table 13. Min	Table 13. Min and Max Score of Mathematics Topic Quadratic Equation 1B							
Description	C1	C2	C3	C4	C5			
xi -	0.7	0.7	0.74	0.7	0.72			
xi +	0.98	1	1	0.99	1			

Table 1	4. Min and M	Iax Score of M	Aath Trigono	metry Topic	2A
Description	C1	C2	C3	C4	C5
xi -	0.71	0.7	0.7	0.7	0.7
xi +	1	0.99	1	1	0.99

Table 15. Min and Max Score of Mathematics Quadratic Equation Topic 2A							
Description	C1	C2	C3	C4	C5		
xi -	0.7	0.7	0.7	0.71	0.7		
xi +	1	0.99	0.98	0.99	1		

1

	Table 1	6. Min and M	lax Score of I	Math Topic T	rigonometry 2	2B
-	Description	C1	C2	C3	C4	C5
-	xi -	0.72	0.7	0.7	0.7	0.71
	xi +	1	1	1	0.98	0.99

1

x1 +	l	1	1	0.98	0.99
Table 17. Min	and Max Sc	ore of Mathen	natics Quadra	tic Equation	Topic 2B
Description	C1	C2	C3	C4	C5
xi -	0.7	0.71	0.7	0.7	0.71

0.97

5. Calculate the normalized utility of each value.

xi +

0.98

The following is an example of utility normalization calculation using class 1A students of Mathematics subject on the topic of Trigonometry.

1

6. Calculating the multiplication of weight values with normalized values. After obtaining the normalized values of each alternative criterion, the next is to multiply the normalized value by the weight value of each criterion.

Alternative A1: Amran Wali $C1 = 0.291 \ 0.30 = 0.437$ $C2 = 0.833 \ 0.35 = 0.098$ C3 = 10.15 = 0.15 $C4 \ = 0.233 \ 0.2 = 0.046$ $C5 \ = 0.866 \ 0.15 = 0.13$ Total = 0.437 + 0.098 + 0.15 + 0.046 + 0.13 = 0.468

The overall results of the MAUT algorithm calculation for math subjects can be seen in the following table:

Table 18. MAUT Algorithm Results for Quadratic Equation Topic Class 1A

Alternative	C1	C2	C3	C4	C5	Total
A1	0.04375	0.098	0.15	0.046667	0.13	0.468417
A2	0.125	0.07	0.115	0.2	0.07	0.58
A3	0.05	0.042	0.035	0.053333	0.07	0.250333
A27	0.00625	0.07	0.09	0.18	0.02	0.36625
Total Average:						12.96225

Table 19. MAUT Algorithm Results for Quadratic Equation Topic Class 1A

		o i i ingoirianni i i	Journo For Quadra	ne Bquanon I	opie ciaso in	
Alternative	C1	C2	C3	C4	C5	Total
A1	0	0.35	0.15	0	0.023077	0.523077
A2	0	0.233333	0.1125	0.1	0.057692	0.503526
A3	0.085	0.337037	0.005357	0.06	0.046154	0.533548
A27	0.02	0.038889	0.096429	0.18	0	0.335317
	Total Average:					

	Table 20. MAUT Algorithm Results Trigonometry Topic Class 1B							
Alternative	C1	C2	C3	C4	C5	Total		
A1	0.068182	0.198333	0.053571	0.048276	0.135	0.503362		
A2	0.047727	0.315	0.128571	0	0.055	0.546299		
A3	0.040909	0.268333	0.128571	0.096552	0.05	0.584366		
A26	0.027273	0.163333	0.042857	0.165517	0.095	0.49398		
	Total Average:							

Alternative	C1	C2	C3	C4	C5	
A1	0.15	0	0.023077	0.117241	0.042857	0.333175
A2	0.1125	0.175	0.057692	0.2	0.042857	
A3	0.005357	0.105	0.046154	0.082759	0.128571	0.367841
			•••			
A26	0.042857	0.198333	0.138462	0.124138	0.0375	
Total Average:						12.98732

	Table 22.	MAUT Algorith	nm Results Trigo	onometry Topic	Class 2A	
Alternative	C1	C2	C3	C4	C5	Total
A1	0.15	0.168966	0.09	0.186667	0.139655	0.735287
A2	0	0.253448	0.115	0.013333	0.155172	
A3	0.005172	0.325862	0.06	0.086667	0.062069	0.53977
A21	-0.00517	0.35	0.01	0.1	0.139655	
		Total A	verage:			10.67529
	Table 23. MA	UT Algorithm R	esults for Quad	atic Equation T	opic Class 2A	
Alternative	C1	C2	C3	C4	C5	
A1	0.15	0	0.023077	0.117241	0.042857	0.333175
A2	0.1125	0.175	0.057692	0.2	0.042857	
A3	0.005357	0.105	0.046154	0.082759	0.128571	0.367841
A26	0.042857	0.198333	0.138462	0.124138	0.0375	
		Total A	verage:			11.74144
	Table 24.	MAUT Algorith	nm Results Trigo	onometry Topic	Class 2B	
Alternative	C1	C2	C3	C4	C5	Total
A1	0.107143	0.046667	0.01	0.007143	0.0375	0.208452
A2	0.15	0.35	0.15	0	0.0375	0.6875
A3	0.117857	0.058333	0.035	0.157143	0.069643	0.437976
A27	0.026786	0.175	0.14	0.064286	0.058929	0.465
		Total A	verage:			14.00405
	Table 25. MA	UT Algorithm R	esults for Ouad	atic Equation T	opic Class 2B	
Alternative	C1	C2	C3	C4	C5	Total
A1	0.005357	0.132759	0.06	0.133333	0.134483	
A2	0.032143	0.253448	0.09	0.074074	0.015517	0.465182
A3	0	0.108621	0.135	0.118519	0.005172	
A27	0.042857	0.048276	0.05	0.037037	0.087931	
-	Total Average:					

After getting all the total average scores from math subjects with various topics and learning models, the following table will be produced:

|--|

Class	Subject	Topic	Metode	Average
1A	Mtk	Trigonometry		12.96225
1A	Mtk	Quadratic Equation		13.61094017
1B	Mtk	Trigonometers		13.01806986
1B	Mtk	Quadratic Equation		12.98732222
2A	Mtk	Trigonometers	PJBL	10.67528736
2A	Mtk	Quadratic Equation	CTL	11.74143678
2B	Mtk	Trigonometers		14.00404762
2B	Mtk	Quadratic Equation	PJBL	12.560052

The following are the ranking results based on the average score.

Metode	Average	Rank
PBL	12.97479	3
IBL	13.61094	1
DL	13.01807	2
PJBL	11.61767	5
CTL	12.87274	4

It can be seen that the highest average value of each learning method is the IBL (Inquiry-Based Learning) method. This learning method is the most effective method for students in mathematics lessons.

4.2. System Implementation Results

System implementation is the application or integration of a design into a system that can be operated [20]. This process involves various steps to verify that the new system can run properly and meet user needs with the right objectives.

1. Dashboard display

		Administrator 🧕
Dashboard	Dashboard	
😫 Class		
∰ Subject	4 4 4 4 4	•
🕾 Торіс	Read More + Read More + Read More + Read More +	
Criteria		
😤 Teacher		
😤 Alternative		
😤 Value		
MAUT		
	Copyright & Your Website 2020	

Fig 1. Dashboard page (Indonesia)

This view is the main page/dashboard that the admin can see after logging into the system.

2. MAUT Calculation result display

DSS MAUT								Administrati		
	Calc	ulation	of DEATH							
	MIN	MIN and MAX Value of Variables								
	No	Class	Subject	Торіс	Learning Method	Variable	MIN Value	MAX Value		
	1	1a	mathematics	trigonometry	pbl	student activity	0.73	0.97		
	2	1a	mathematics	trigonometry	pbl	student understanding	0.71	0.96		
	3	1a	mathematics	trigonometry	pbl	collaboration skills	0.7	1		
	4	1a	mathematics	trigonometry	pbl	initiative and creativity	0.7	1		
	5	1a	mathematics	trigonometry	pbl	teacher-student communication	0.7	1		
	6	1a	mathematics	quadratic equation	ibl	student activity	0.7	1		
	7	1a	mathematics	quadratic equation	ibl	student understanding	0.73	1		
	В	1a	mathematics	quadratic equation	ibl	collaboration skills	0.7	0.98		
	9	10	mathematics	quadratic equation	ibl	initiative and creativity	0.7	1		
	10	1a	mathematics	quadratic equation	ibl	teacher-student communication	0.74	1		
	11	1a	physics	newton's law	pbl.	student activity	0.7	1		
	12	1a	physics	newton's law	pbl	student understanding	0.7	0.99		
	13	1a	physics	newton's law	pbl	collaboration skills	0.7	0.99		
	14	14	obusies	nautor/e lain	adat	initiation and excettains	0.7			

Fig 2. MAUT calculation page (Indonesia)

When the admin opens this page, MAUT will be calculated immediately. This page contains MIN and MAX calculation data for each criterion, normalized values, utility values and utility multiplication with criterion weights.

5. Conclusion

Based on the results of the research that has been conducted, this study produces a web-based decision support system designed to assist in determining the learning styles of students at SMA Negeri 1 Jangka. This system uses the Multi-Attribute Utility Theory (MAUT) method, which can evaluate and rank based on the highest utility value of various alternative learning styles available. The system functions by processing student data through several predetermined criteria, such as students' level of understanding, learning preferences, and the effectiveness of previously applied methods. After processing the data, the system will provide learning style recommendations through rankings based on the highest utility value. Thus, teachers can have a more objective reference in determining each student's most suitable learning approach. Based on this system's calculations, the Inquiry-Based Learning method obtained the highest utility value of 13,611, making it the most appropriate learning method for math subjects. Inquiry-based learning is an approach that emphasizes exploration, questioning, and active investigation by students to understand the concepts being taught, making it suitable for improving conceptual and applied mathematics understanding

References

- [1] R. A. Putri, I. Magdalena, A. Fauziah, and F. N. Azizah, "PENGARUH GAYA BELAJAR TERHADAP PEMBELAJARAN SISWA SEKOLAH DASAR," *Jurnal Ilmiah Indonesia, Februari*, vol. 2020, no. 2, pp. 157–163, [Online]. Available: http://cerdika.publikasiindonesia.id/index.php/cerdika/index-157-
- [2] I. R. Khoeron, N. Sumarna, and T. Permana, "PENGARUH GAYA BELAJAR TERHADAP PRESTASI BELAJAR PESERTA DIDIK PADA MATA PELAJARAN PRODUKTIF," 2014.
- [3] B. Dwi Pranata, U. Mahdiyah, P. Kasih, U. Nusantara, and P. Kediri, "Pemodelan Gaya Belajar Siswa dengan Menggunakan Support Vector Machine", [Online]. Available: https://ojs.unpkediri.ac.id/index.php/noe
- [4] Y. Patandung and S. Panggua, "Analisis Masalah-Masalah Pendidikan dan Tantangan Pendidikan Nasional." [Online]. Available: https://sinestesia.pustaka.my.id/journal/article/view/277
- [5] E. Suseno, E. Syakira, and R. Trisudarmo, "Sistem Pendukung Keputusan Penentuan Gaya Belajar Siswa Menggunakan Metode Profile Matching".
- [6] R. Puspita, "Metode Multi Attribute Utility Theory (MAUT) dalam Keputusan Pengendalian Persediaan Obat dan Alat Kesehatan," Jurnal Informatika Ekonomi Bisnis, pp. 78–83, Sep. 2022, doi: 10.37034/infeb.v4i3.148.
- [7] Y. Afrillia, W. Fuadi, and A. I. Lestari, "Pemilihan Tempat Kost Menggunakan Metode Multi Attribute Utility Theory Dan Algoritma A*," *Jurnal Teknik Informatika dan Sistem Informasi*, vol. 9, no. 2, Aug. 2023, doi: 10.28932/jutisi.v9i2.6279.
- [8] M. Hidayat, P. Alam Jusia, S. Dinamika Bangsa, P. Studi Sistem Informasi, and J. Jl Jendral Sudirman, "Analisa dan Perancangan Sistem Pendukung Keputusan Untuk Penerimaan Karyawan PT. Dos Ni Roha Jambi Menggunakan Metode MAUT (Multi Attribute Utility Theory)," 2018.
- S. N. #1 and E. Ramaraj, "Classification algorithm in Data mining: An Overview," International Journal of P2P Network Trends and Technology, vol. 4, 2013, [Online]. Available: http://www.ijpttjournal.org
- [10] S. R. Joseph, H. Hlomani, and K. Letsholo, "Data Mining Algorithms: An Overview SUBJECT CLASSIFICATION TYPE (METHOD/APPROACH)."
- [11] S. Kalmegh, "Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News," 2015. [Online]. Available: www.ijiset.com
- [12] P. Edastama, A. Bist, and A. Prambudi, "Implementation Of Data Mining On Glasses Sales Using The Apriori Algorithm," 2021. [Online]. Available: https://iiast-journal.org/ijcitsm/index.php/IJCITSM/article/view/46
- [13] "Research on Adaptive Algorithm Recommendation System Based on Parallel Data Mining Platform," *Advances in Computer, Signals and Systems*, vol. 8, no. 5, 2024, doi: 10.23977/acss.2024.080503.
- [14] C. Bachri and A. Riyandi, "PERANCANGAN SISTEM PENUNJANG KEPUTUSAN UNTUK MEMILIH GAYA BELAJAR ANAK SECARA ISLAMI DENGAN METODE BAYES BERBASIS ANDROID."
- [15] A. Riani, T. Taryo, A. Hindasyah, J. Raya Puspitek, and K. Tangerang Selatan, "Analisis Komparasi Metode Sistem Pendukung Keputusan pada Gaya Belajar 'VARK'".
- [16] R. Huda, S. Defit, R. Sovia, and F. I. Komputer, "Metode Multi Attribute Utility Theory Dalam Pemilihan Dosen Terbaik Berdasarkan Kinerja."
- [17] N. Widianningsih, R. Defi, and M. Putri, "Sistem Pendukung Keputusan Gaya Belajar Anak Usia 12 s/d 18 Tahun dengan Program Bantu Media Visual Aural Read Kinesthetik (VARK)."
- [18] I. Naufal and N. Nurdin, "SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PENYAKIT PADA TANAMAN TERONG MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING," *TECHSI - Jurnal Teknik Informatika*, vol. 12, no. 1, p. 123, Apr. 2020, doi: 10.29103/techsi.v12i1.2379.
- [19] R. R. Waliyansyah, M. Novita, and L. P. Aditasar, "Sistem Pakar Penentuan Gaya Belajar Siswa Dengan Metode Forward Chaining Berbasis Web," *IT Journal Research and Development*, vol. 5, no. 1, pp. 32–44, Jul. 2020, doi: 10.25299/itjrd.2020.vol5(1).4740.
- [20] M. U. Rizal Tjut Adek, A Survey on The Accuracy of Machine Learning Techniques for Intrusion and Anomaly Detection on Public Data Sets. IEEE, 2020.