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Abstract 

 

Plants are essential to human beings because plants are considered most as foods. Plants can be used for food ingredients, medical 

purposes, and industrial applications. People inspect plants using traditional methods, such as using the naked eye, which can be time-

consuming and expensive. Therefore, the effectiveness and high quality of automated crop identification classification systems are 

needed for adequate crop protection. This study aims to identify and classify nine plant species using different datasets, focusing on 

transfer learning from models trained on plant leaf datasets. Most research has shown that increasing the dataset size would significantly 

improve classification accuracy. The accuracy of the first test using the modified N1 classification model was 99.45%. In the second 

experiment, the accuracy of the N2 model was 99.65%. The accuracy of the N3 model, despite being slightly less accurate than AlexNet, 

was 99.55%, and it performed better, while the accuracy of AlexNet was 99.73%. Compared to the AlexNet model, the proposed model 

performed better and required less training time. The N1 model reduced the training time by 34.58%, the N2 model by 18.25%, and the 

N3 model by 20.23%. The N1 and N3 resulted in the same size, namely 14.8MB, and the compactness was 92.67%. The size of the N2 

model was 29.7MB, and the compactness was 85.29% compactness. The proposed models provide more accuracy and efficiency in 

classifying plant leaves and can be used as a standalone mobile application that benefits farmers. 
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1. Introduction 

Plants are undeniably a vital food source for all living beings, thus earning the title of the backbone of ecosystems [1]. Plant species hold 

immense value as they can be utilized for medicinal purposes, food ingredients, and industrial applications. Some plant species are now 

endangered, underscoring the need for a comprehensive database for plant protection. The traditional method of manually inspecting 

plants with the naked eye is time-consuming and expensive [2], [3]. Continuous monitoring by experts in various agricultural fields 

follows this procedure. To optimize plant protection, accurate classification of plants is crucial [4]. Unlike seasonal flowers, plant leaves 

are accessible year-round and provide prominent features, making them ideal for automated plant classification. Leaves are instrumental 

in exploring genetic relationships and understanding plant development. However, given the many species, even botanists find plant 

identification challenging [5], [6]. Leaf recognition technology assists botanists in classifying specific plant species. Plants generally 

exhibit distinct characteristics such as texture, shape, color, and size, which differ among species [7]. In recent years, various "Computer-

Aided Detection" (CAD) methods have been employed for leaf-based plant recognition due to their high classification accuracy [8], [9]. 

The interdisciplinary approach to plant classification integrates botanical data and species concepts with computational solutions [10]. 

Recent advancements in science and technology have enabled computer vision to assist botanists in identifying plants. Researchers in 

Computer vision have utilized leaves as a comparative tool for classifying plants [11]. From a machine-learning perspective, the 

classification problem can be solved by adopting innovative and rapid solutions and bringing together experts, decision-makers, farmers, 

and strategists [12]. 
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Evolutionary neural networks have garnered significant attention from researchers in recent years due to their ability to provide superior 

image classification accuracy. These networks combine neural networks and computation to address a variety of problems. Krizhevsky et 

al. [13] set a record in the 2012 ImageNet Large Scale Visual Recognition Challenge by achieving 10.9% higher classification accuracy 

than the second-best entry. Advances in image processing have introduced various preprocessing techniques for image feature extraction. 

Feature extraction is the process of identifying discriminative characteristics that form the basis of classification. The classification task 

can be performed using several machine learning technologies, such as Support Vector Machines (SVM), Naïve Bayes, K-Nearest 

Neighbor (KNN), and Convolutional Neural Networks (CNN) [14]. 

Deep Learning is a subset of machine learning. It is a set of algorithms to model high-level data abstractions through deep graphs and 

multiple processing layers, including non-linear and linear transformations [15]. Convolutional Neural Networks (CNNs) are best used 

for image classification tasks due to the close relationship between layers and spatial information, which accounts for their  recent 

popularity in plant classification. 

Image-based assessment methods give more accurate and consistent results than human visual assessment from several studies [16]. 

Extensive work has been done to classify various items using different techniques. Lecun et al. [17] introduced the foundational deep 

learning tool CNN as an entry point to deep learning models in classification and detection. Deep learning models have been increasingly 

applied in agriculture in recent years. CNNs are dynamic models that significantly aid classification applications. Various CNN models 

used for classification include AlexNet, GoogLeNet [18], ResNet50, ResNet18, ResNet101[19], VGG16, VGG19 [20], DenseNet [21], 

and SqueezeNet [22], among others. 

In [23], Mohanty et al. utilized AlexNet and GoogLeNet to classify 14 plant leaves. The accuracy was 99.27% and 99.34%, respectively. 

They experimented with different input data types, including color images, segmented images, and grayscale images separately. In [24], 

Dyrmann et al. implemented a CNN model to classify plant leaf data, and the accuracy was 86.2%. Barré et al. [25] classified plant 

leaves using the LeafSnap, Foliage, and Flavia datasets for different class classifications implemented in their proposed LeafNet model. 

The results of 184 LeafSnap classes gave an accuracy of 86.3%. The result of 60 foliage dataset classes gave an accuracy of 95.8%. The 

result of 32 Flavia dataset classes gave an accuracy of  97.9%. 

A deep CNN model combined with a Multilayer Perceptron (MLP) classifier achieved 97.7% accuracy, and with an SVM classifier, the 

accuracy improved to 98.1% for the MalayaKew dataset, which contains 44 classes. Haque et al. [26] presented work on plant 

classification using geometric features during preprocessing, reaching 90% accuracy for classifying 10 plant species from the Flavia 

dataset. Previous studies achieved 84.2% accuracy in the LifeCLEF Plant Identification Task using their proposed Siam 3SN network, 

which learns spatial and structural features for leaf classification tasks. Further recognition of plant families and identification of plant 

classes for the four datasets were conducted using a two-way attention CNN model [27]. 

Identifying and classifying medicinal plants are crucial for the preparation of Ayurvedic medicine. Accurate classification is also 

essential for farmers, botanists, practitioners, forestry department officials, and those preparing Ayurvedic medicines. Using an AlexNet 

model, [28] the accuracy was 94.87% in classifying medicinal plants, while the accuracy of the Ayurleaf CNN model was 95.06%. The 

accuracy of previous studies using 20 self-collected medical plant species in the MobileNet model was 98.5%. In [29], a ten-layer CNN 

model was proposed by Liu et al. for classifying plant leaves into 32 categories. The accuracy of that model was 87.92%. The accuracy 

of the ResNet model for plant identification using the LeafSnap dataset was 93.09%. Using an Apple iPad, plant leaf classification was 

performed on images taken by Silva et al. [30]. The Deep Neural Network (DNN) model showed an accuracy of 91.17%, which 

improved to 95.58% using a CNN model. The classification accuracies were 91.5%, 92.4%, and 89.6% for the VGG16, VGG19, and 

Inception ResNetV2 models. For berry plant identification, the accuracy of the AlexNet model was 97.80% for three self-collected berry 

plant classes. A comparative analysis of work related to plant classification is presented in Table 1. 
 

Table 1. Comparative analysis of research related to plant classification 
Ref. Obj Data Cls Model Accuracy 

Dyrmann et al.  Plant leaf classification Six different datasets 22 CNN 86.20% 

Mohanty et al.  Identify 14 crop species. Plant 

Village 

38 AlexNet 99.27% 

38 Google Net 99.34% 

Barré et al. plant identification system LeafSnap 184 LeafNet 86.30% 

60 LeafNet 95.80% 

32 LeafNet 97.90% 

Lee et al. Plant leaf classification Malaya 

Kew 

44 CNN MLP 97.70% 

44 Deep CNN SVM  98.10% 

Gao et al.  Leaf Identification Life 

CLEF 2015 

30 3SN 
84.20% 

Dileep and Pournami.  Medicinal plant classification AyurLeaf 40 AlexNet 94.87% 

40 Ayurleaf CNN 95.06% 

Duong-Trung et al.  Medicinal plant classification Own data 20 MobileNet 98.50% 

Liu et al.  Classification of 32 different plant 

leaves 

Flavia 32 Ten-layer CNN model 
87.92% 

Bodhwani et al.  Plant Identification LeafSnap 180 ResNet 93.09% 

Tiwari.  Plant leaf classification Dataset collected by  30 DNN 91.17% 

30 CNN 95.58% 

Yang et al.  Classification of plant leaf Own data 15 VGG16 91.50% 

15 VGG19 92.40% 

15 Inception- ResNet V2 89.60% 

Villaruz.  Identification of berry plants Own data 3 AlexNet 97.80% 

 

After completing plant classification, the work can be extended to disease classification. The accuracy of the VGG16 model, trained with 

transfer learning for apple leaf diseases, was 90.4%. Using an augmented dataset of 14,828 tomato leaf images, AlexNet reached an 

accuracy of 98.66%, while the VGG16 model achieved 98.18% [31]. The accuracy of a small CNN proposed by [32] to classify plants as 

healthy or diseased was 96.6%. The classification accuracy for tomato plant diseases using laboratory data was 98.50% for the VGG16 
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model, 98.30% for the VGG19 model, 99.40% for the ResNet model, and 99.60% for the Inception V3 model [33]. The model proposed 

by [34] outperformed both using AlexNet and VGG16. The accuracy in tomato plant leaf classification was 99.45% and 90.1%, 

respectively. 

 

The accuracy of the Bagged Tree classifier, leveraging RGB, HSV, and LBP features for guava fruit disease classification, was 99% [35]. 

The accuracy of the detection of cassava plant diseases using a deep residual neural network was 96.75% [36]. Alli et al. [37] applied 

data augmentation techniques, achieving 99.7% accuracy in cassava plant disease classification using MobileNetV2. Data was 

autonomously collected from farms and processed using a Custom-Net model for pearl millet disease classification. The accuracy was 

98.78% [38]. Table 2 provides a comparative overview of research efforts in plant disease classification. 

 

Table 2. Comparative Analysis of Research Related to Plant Disease Classification 

Ref. Obj Data Model Future Scope 

Wang et al.  Apple black rot disease severity PV VGG16 More data at various disease 

stages can be used to improve 

accuracy. 

Mohanty et al.  Identify 14 crop species and 26 

diseases 

PV AlexNet, GoogLeNet Image data from a smartphone 

can be supplemented with 

location and time information to 

improve accuracy.  

Brahimi et al.  Tomato plant disease 

classification 

PV AlexNet, GoogLeNet the size of deep models and the 

computation should be reduced. 

Bharali et al.  Classifying into healthy and 

disease classes for different plant 

Google images CNN model Larger datasets and more complex 

networks can be created to assess 

performance and improve 

accuracy. 

Ahmad et al.  Classification of Tomato plant 

disease 

Own data VGG16, VGG19, ResNet 

Inception-V3 

Optimize these models for better 

performance on real-world field-

based data. 

Anadhakrishnan et al.  Classification of Tomato plant 

disease 

PV AlexNet, VGG16, LeNet, 

ResNet, CNN model 

computational time can be 

improved 

Oyewola et al.  Cassava mosaic disease 

classification 

Cassava Disease 

Dataset from 

Kaggle 

Deep residual neural 

network 

To improve accuracy, novel 

image augmentation methods are 

combined with other deep neural 

networks. 

Alli et al.  Cassava disease recognition Own data MobileNetV2 Identifying a variety of plant 

diseases using multi-class 

detection 

Almadhor et al.  Guava fruit disease detection Own data Bagged Tree classifier To extract features automatically, 

employing deep learning methods  

Kundu et al.  Pearl millet disease 

classification 

Own data Custom-Net scope of making the predictions 

based on the parametric dataset 

collected by the data collector part 

 
In this study, the CNN model proposed is utilized to classify plant species using the PlantVillage (PV) and Flavia datasets. A comparison 

is drawn with AlexNet through transfer learning. Despite its depth, the CNN model exhibits compact dimensions, requires less training 

time, and maintains high accuracy. This research introduces significant contributions: 

1. Three exact and efficient models (N1, N2, and N3) are introduced for plant leaf classification. These models gave the best accuracy 

in classification while demanding reduced training durations. 

2. The models' efficacy is validated by classifying outputs from the challenging PV and Flavia datasets, showcasing their high 

accuracy. 

3. To demonstrate the versatility of the proposed models, the model was implemented to classify tomato leaf diseases using images 

captured from mobile phones. The accuracy achieved in disease classification underscores their suitability for plant and disease 

classification tasks. 

2. Methods 

This research uses a newly developed compact CNN model and AlexNet with transfer learning to explore plant classification. Nine 

classes, each representing distinct plant species images sourced from the PlantVillage (PV) database, were employed for classification. 

Additionally, 32 courses from the Flavia dataset underwent classification. Figure 1 depicts the workflow for the classification and 

validation procedures. The PV and Flavia datasets underwent separate augmentation, resizing images as necessary. The input image 

dimensions for the proposed model were 256 × 256 × 3, while for AlexNet, they were 227 × 227 × 3. The datasets were split into 80% 

for training and 20% for testing. The proposed model and AlexNet were trained using the training dataset to classify plant species. 

Subsequently, the trained models were validated using the testing data to predict classes for new data instances. 
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Fig 1. Workflow used in classification and validation 

2.1. Plant Leaf Dataset 
The PV dataset comprises images of healthy and diseased leaves across 38 distinct classes. This dataset includes healthy and diseased 

leaves from nine plant species: apple, cherry, corn, grape, peach, pepper, potato, strawberry, and tomato. The author considers these plant 

species for classification purposes. The Flavia dataset, consisting of 32 classes, was utilized for classification with the proposed model. 

The Flavia dataset encompasses leaf variant classes from various plant species such as "Anhui Barberry", "Beale's barberry", "Big-fruited 

Holly", "Camphortree", "Canadian Poplar", "Castor Aralia", "Cina Kayu Manis", "Berangan Kuda Cina", "Bunga Merah Cina", "Toon 

Cina", "Pohon Tulip Cina", "Crape Myrtle" atau "Crepe Myrtle", "Deodar", "Ford Woodlotus", "Ginkgo Maidenhair Tree", "Privet 

Mengkilap", "Pohon Hujan Emas", "Kayu Panah Jepang", "Kayu Keju Jepang", "Ceri Berbunga Jepang", "Maple Jepang", "Nanmu", 

"Oleander", "Persik", "Bambu Puber", "Selatan Magnolia", "Sweet Osmanthus", "Tangerine", "Trident Maple", "True Indigo", 

"Wintersweet", "Yew Plum Pine". 

 

2.2. Preprocessing 
Data preprocessing plays a critical role in ensuring algorithmic consistency and effectiveness. Deep learning models benefit from a 

diverse input dataset that avoids overfitting. Subtle adjustments, imperceptible to the human eye—like introducing noise and blur to input 

images—assist CNNs in capturing more complex features [39], [40]. In this study, the dataset undergoes augmentation, including 

Gaussian blur, salt and pepper noise with a random scale between 0.95 to 1.05 in horizontal and vertical directions, and random rotations 

ranging from -30° to 30° from the original image orientation. Detailed augmentation strategies are outlined in Table 3, encompassing 

rotations, flipping, color adjustments such as saturation, hue (representing color shades like blue, red, green, etc., ranging from 0 to 360 

degrees), and contrast. Histogram equalization assesses and enhances contrast values in color augmentation, improving overall accuracy. 

Table 3. Augmentation Data 
No. Augmentation Methods 

Augmentation 1 Noise Salt and pepper noise 

Blur Gaussian blur 

Position augmentation Random scaling 

Random rotation 

Augmentation 2 Position augmentation 45° rotation, 135° rotation, 225° rotation 

315° rotation, horizontal flip, vertical flip 

Color augmentation Hue 

Saturation 

Contrast 

The plant leaf data classification was conducted on a dataset comprising 38,400 images and an augmented dataset totaling 336,000 

images. The deep learning framework utilized in this study includes proposed CNN model 1 (N1 model), CNN model 2 (N2 model), 

CNN model 3 (N3 model), and AlexNet model with transfer learning. Input images were resized to 256 × 256 × 3 for the developed and 

proposed models and resized to 227 × 227 × 3 for the AlexNet model. 

 

2.3. Deep Learning Modelling 
This analysis aims to create a computationally efficient and accurate classification of plant leaf learning models. The developed CNN 

model with three convolutional layers, as illustrated in Figure 2, is employed in this study. The model consists of three sets of 2D 

convolutional layers (Conv2D) followed by batch normalization and ReLU layers. 

 

Fig 2. CNN models for classification and validation 

Each model, N1, N2, and N3, incorporates three sets of Conv2D, batch normalization, and ReLU layers. The first two sets of Conv2D 

layers are followed by max-pooling layers, while the third set of Conv2D layers includes fully connected layers, softmax classifiers, and 

classification layers. The convolutional layers are customized with varying filter sizes and numbers across the CNN models N1, N2, and 

N3, as depicted in Table 4. 

testing 

training 

Dataset Data Augmentation 

and Data Resizing 

Creating Training 

and Testing Dataset 

Deep Learning 

Model 

Classification 

Validation 
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Table 4. Conv layers N1 model, N2 model, and N3 model 

CNN Layer N1 Model N2 Model N3 Model 

1st Conv2D 3 × 3, 8 3 × 3, 16  7 × 7, 8 

Max pooling 2 2 2 

2nd Conv2D 3 × 3, 16 3 × 3, 32 5 × 5, 16 

Max pooling 2 2 2 

3rd Conv2D 3 × 3, 32 3 × 3, 64  3 × 3, 32 

 

The convolutional layers employ a set of filters that convolve across the entire image. Each convolutional layer is tasked with learning 

various attributes that capture discriminative patterns to differentiate between plant leaf types in this architecture. Deep Neural Networks 

analyze different feature information from the preceding layers after each gradient update on the dataset. On the one hand, due to the 

parameters being updated in the previous layers during training, the distribution of input feature maps varies significantly. This condition 

has a significant effect on training speed and requires the use of various heuristics for parameter initialization. CNNs utilize Rectified 

Linear Unit (ReLU), an activation function designed specifically for neural networks. It operates as an identity function, f(x) = x, for all 

positive input 'x,' and zero for negative values. ReLU is rarely activated, mimicking biological neuron inactivity in response to certain 

stimuli. Max-pooling layers selectively activate a subset of neurons in the feature map. These are applied uniformly across all blocks in a 

'2x2' window with a stride factor of '2'. This effectively reduces the width and height of feature maps while maintaining a constant 

number of channels. Predicting multinomial probability distributions in CNN models, the softmax function is the output layer's activation 

function. In other words, softmax is employed as the classifier for multi-class classification. 

Minimizing computational costs and shared weight propagation while producing lower backpropagation weights is one of the advantages 

of using smaller filter sizes compared to fully connected networks. Experts say the optimal choice remains 3×3 [41] [42]. The CNN N1 

model has a consistent filter size 3×3 across all three Conv layers. The first Conv2D layer has eight filters, while the second and third 

Conv2D layers have 16 and 32 filters, respectively. In the CNN N2 model, the filter size remains the same as N1, but the number of 

filters is doubled compared to N1. For the CNN N3 model, the filter size for the first Conv2D layer is 7×7 with eight filters . The second 

Conv2D layer has a filter size 5×5 with 16 filters, and the third Conv2D layer is 3×3 with 32 filters. The first and second Conv2D layers 

are followed by max-pooling layers with a stride of 2 in a 2×2 window. The dataset is split into training and testing sets of 80-20% from 

38,400 and 336,000 images. This data combination trains all CNN models for plant leaf classification. AlexNet, a pre-trained model 

capable of classifying up to 1000 classes, is also utilized. This study classifies plant leaves from the PV and Flavia datasets with 9 and 32 

classes, respectively. For this purpose, AlexNet with transfer learning is implemented. Transfer learning aims to optimize Learning by 

leveraging the transferability of knowledge from its source. 

 

2.4. CNN Model Performance Parameters 
Deep learning model classification depends on their performance and accuracy. Performance parameters are assessed using the confusion 

matrix derived from the test dataset. Diagonal elements denote correct classifications, while non-diagonal elements indicate 

misclassifications within the confusion matrix. The components of the confusion matrix are detailed as follows [43] 

1. True Positive (TP) refers to positive samples correctly labeled by the classifier. 

2. True Negative (TN) refers to negative samples correctly labeled by the classifier. 

3. False Positive (FP) refers to negative samples incorrectly labeled as positive. 

4. False Negative (FN) refers to positive samples incorrectly labeled as unfavorable. 

 

This evaluation focuses on key performance metrics such as macro recall, macro precision, macro F1 score, and average accuracy [31]. 

Sensitivity, or recall, measures the model's ability to correctly identify the positive class, also known as the actual positive rate. Precision 

indicates how accurately the model predicts positive instances. The F1 score, the harmonic mean of recall and precision, offers a 

balanced view of the model's performance. "Macro recall measures the classifier's ability to identify labels correctly across all classes." 

"Macro precision calculates the average consistency between actual data labels and the classifier's predictions for each class." "Macro F1 

score represents the overall balance between precision and recall, averaged across all classes." "Accuracy is the proportion of correct 

predictions out of all predictions made." 

         

   

Where C is the total of the class 

      

 

 

 

 

 

 

 

 

 

 

The PV dataset comprises nine classes, resulting in a 9 × 9 confusion matrix. The confusion matrix for the Flavia dataset with 32 classes 

is 32 × 32. The accuracy of each class was evaluated for the N1, N2, N3, and AlexNet models. Additionally, the simulation time for each 

deep-learning model was recorded and measured in seconds. 
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2.5. Validation of The Trained CNN Model 

Model validation was performed for the trained CNN models using images from the PlantVillage and Flavia datasets, which were not 

included in the training or testing sets. This validation utilized 33,600 images to classify unknown leaf images and evaluate the model's 

accuracy. 

3. Result and Discussion  

The PV dataset, which includes nine plant species, is depicted in Figure 3. The classes are abbreviated as follows: Apple with four 

varieties (A); Cherry with two varieties (Ch); Corn with four varieties (Co); Grape with four varieties (G); Peach with two varieties 

(Pch); Pepper with two varieties (Pep); Potato with three varieties (Po); Strawberry with two varieties (S); and Tomato with nine varieties 

(To). 

 

Fig 3. Dataset Train PlantVillage [29] 

The Flavia dataset has 32 classes or types, as shown in Figure 4. These include "Anhui Barberry" (AB), "Beale's Barberry" (BB), "Big-

Fruited Holly" (BFH), "Castor Aralia" (CA), "Camphortree" (Cam), "Chinese Cinnamon" (CC), "Chinese Horse Chestnut" (CHC), 

"Crape Myrtle" (CM), "Canadian Poplar" (CP), "Chinese Redbud" (CR), "Chinese Toon" (CT), "Chinese Tulip Tree" (CTT), "Deodar" 

(D), "Ford Woodlotus" (FW), "Ginkgo Maidenhair Tree" (GMT), "Glossy Privet" (GP), "Goldenrain Tree" (GT), "Japan Arrowwood" 

(JA), "Japanese Cheesewood" (JC), "Japanese Flowering Cherry" (JFC), "Japanese Maple" (JM), "Nanmu" (N), "Oleander" (O), "Peach" 

(P), "Pubescent Bamboo" (PB), "Southern Magnolia"(SM), "Sweet Osmanthus" (SO), "Tangerine" (T), "Trident Maple" (TM), "True 

Indigo" (TI), "Wintersweet" (W), and "Yew Plum Pine" (YPP). All 32 classes represent different species. 

 

Fig 4. Dataset train Flavia [29] 

The dataset preprocessing steps are detailed in Section 2.2. The dataset was enhanced with two augmented data types, augmented data 1 

(ad1) and augmented data 2 (ad2). The images were subsequently resized to 256 × 256 × 3 for the proposed model and to 227 × 227 × 3 

for AlexNet. Figure 5 illustrates examples of these augmented images. 
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Fig 5. Preprocess dari dataset PV dan Flavia [29] 

With transfer learning, plant leaf classification was performed using multiple models such as N1, N2, N3, and AlexNet. The 

classification accuracy of these models on the dataset, ad1 and ad2, is shown in Figure 6. Classification accuracy improved with dataset 

augmentation. The results show that more features were learned in ad2 because of the increased number of images used to train the 

models, which aided in achieving better prediction accuracy. The accuracy of the proposed N1 model was 86.58% with the dataset, 

which increased to 89.31% with ad1 and 99.45% with ad2. The recommended N2 model achieved an accuracy of 92.09% with the 

dataset, improving to 99.65% with ad2. The proposed N3 model showed an accuracy of 89.61%, which increased to 89.8% with ad1 and 

99.55% with ad2. AlexNet demonstrated an accuracy of 98.53% with the dataset, rising to 99.73% with ad2. The accuracy of the N1, N2, 

N3 models and AlexNet was nearly identical for ad2. Training time increased with the number of images. The training times for models 

N1, N2, N3, and AlexNet are shown in Figure 7. The proposed models N1, N2, and N3 required less training time than AlexNet. The 

number of layers and filter sizes used in the proposed CNN models N1, N2, and N3 were fewer than those in the traditional AlexNet 

model. The developed models had three CNN layers, whereas AlexNet had five convolutional layers. Additionally, AlexNet used larger 

filter sizes than the proposed models. The compact design of our developed models, with fewer CNN layers and smaller filter sizes, 

reduced model complexity, resulting in shorter training times. 

 

 

Fig 6. Model classification accuracy for datasets, ad1 and ad2 for PV and Flavia datasets [29] 

 

Fig 7. Model train time for PV and Flavia datasets [29] 

Overfitting arises when a model performs well on training data but struggles to generalize to new, unseen data. To mitigate overfitting, 

strategies such as data augmentation, model simplification, dropout, regularization, and early stopping are implemented [44], [45]. In this 

study, the models were trained over two epochs with a learning rate set at 0.0001. The training accuracy and loss, as well as  the 

validation accuracy and loss, are illustrated in Figure 8. Effective prevention of overfitting is indicated by models that show increasing 

training and validation accuracy alongside decreasing training and validation loss. Figure 8 displays the training accuracy and loss for (a) 
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model N1, (c) model N2, (e) model N3, and (g) AlexNet. Validation accuracy and loss are depicted in Figure 8 for (b) model N1, (d) 

model N2, (f) model N3, and (h) AlexNet. 

   

Fig 8. The accuracy of training and the loss of training  along with validation accuracy and validation loss for model N1, model N2, 

model N3, and AlexNet [29] 

A comparison of models in terms of accuracy and model size with existing benchmarks is presented in Table 5. Jeon and Rhee [46] 

achieved a notable 99.60% accuracy using Google. In their study on plant classification, Kaya et al. [47] utilized the PV and Flavia 

datasets employing AlexNet and VGG16 models. Wang and Wang [48] achieved 84.47% accuracy with VGG16 and improved to 

92.64% with ResNet50 for plant classification. VGG16 and VGG19 achieved 81.3% and 96.25% accuracy, respectively [49]. Pruning 

and post-quantization techniques were applied to VGG16, AlexNet, and LeNet models [50] to reduce their size, resulting in 

performances of 91.49%, 96.59%, and 95.2%, respectively. A ten-layer CNN model by [29] achieved 87.92% accuracy with the Flavia 

dataset and 84.02% with the PV dataset. In our proposed models, N1 achieved 99.45% accuracy, N2 achieved 99.65%, N3 achieved 

99.55%, and AlexNet with transfer learning reached 99.73% using the ad2 training set. The proposed model sizes for N1, N2, and N3 

were 14.8 MB, 29.7 MB, and 14.8 MB, respectively, compared to AlexNet's 202 MB. Models N1 and N3 were 92.67% more compact 

than AlexNet, and N2 was 85.29% more compact while achieving similar accuracy ranges. Furthermore, training times for N1 and N2 

were shorter compared to AlexNet. N1 required approximately 34.58% less training time, N2 about 18.25% less, and N3 20.23% less 

than AlexNet, demonstrating efficient training capabilities alongside superior performance metrics. 

Table 5. Comparison of the performance of the proposed job with other existing jobs in the classification 

Ref. Data Method Accuracy Size 

Mohanty et al.  PV 
AlexNet 99% 227 MB  

GoogLeNet 99% 27 MB  

Lee et al.  Flavia AlexNet 99.40% 202 MB  

Jeon and Rhee  PV GoogLeNet 99.60% 27 MB  

Kaya et al. 

Flavia 
Alexnet 97.89% 202 MB  

VGG16 98.16% 515 MB  

PV 
Alexnet 98.6% 202 MB  

VGG16 99.8% 515 MB  

Wang  Flavia 
VGG16 84.47% 515 MB  

ResNet50 92.24% 96 MB 

Anubha Pearline et al.  Flavia 
VGG16 95% 515 MB  

VGG19 96.25% 535 MB 

Venkatesh et al.  PV 
VGG16 81.3% 515 MB  

VGG16 +Inception 92.2% - 

Fountsop et al. Flavia 
VGG16 Pruning + post-

quantization 
91.49% 36.76 MB 
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AlexNet Pruning + post-

quantization 
96.59% 32.37 MB 

LeNet Pruning + post-

quantization 
95.02% 9.91 MB 

Liu et al. Flavia ten-layer CNN 87.92% 7 MB 

Own work 

PV 

N1 model 99.45% 14.8 MB 

N2 model 99.65% 29.7 MB 

N3 model 99.55% 14.8 MB 

AlexNet 99.73% 202 MB 

Flavia 

N1 model 99.17% 14.8 MB 

N1 model 99.59% 29.7 MB 

N1 model 99.36% 14.8 MB 

AlexNet 99.87% 202 MB 

The classified output images for models N1, N2, N3, and AlexNet using transfer learning with 80% of the PV image dataset training data 

are depicted in Figure 9. These models underwent training using the original dataset, ad1 and ad2, and their respective outputs are 

presented here. Figure 9 illustrates the classified outputs for both the proposed models and AlexNet: (a) N1 model with the dataset, (b) 

N2 model with the dataset, (c) N3 model with the dataset, (d) AlexNet model with the dataset, (e) N1 model with ad1, (f) N2 model with 

ad1, (g) N3 model with ad1, (h) AlexNet model with ad1, (i) N1 model with ad2, (j) N2 model with ad2, (k) N3 model with ad2, and (l) 

AlexNet with ad2. The introductory part of the Results and Discussion section introduces the acronyms used to denote these classified 

output images associated with the PV dataset. 

 

Fig 9. Classified output images for 80% of training data with PV dataset using (a) N1 model with the dataset, (b) N2 model with the 

dataset, (c) N3 model with the dataset, (d) AlexNet model with the dataset, (e) Model N1 with ad1, (f) Model N2 with ad1, (g) Model N3 

with ad1, (h) Model AlexNet with ad1, (i) Model N1 with ad2, (j) Model N2 with ad2, (k ) Model N3 with ad2, (l) AlexNet with ad2 [21] 

The classified output images for the proposed models N1, N2, N3, and AlexNet using transfer learning with 80% of the Flavia image 

dataset training data are depicted in Figure 10. These models underwent training with the dataset, ad1 and ad2, and their respective 

outputs are presented here. Figure 10 illustrates the classified outputs for both the proposed models and AlexNet: (a) N1 model with the 

dataset, (b) N2 model with the dataset, (c) N3 model with the dataset, (d) AlexNet model with the dataset, (e) N1 model with ad1, (f) N2 

model with ad1, (g) N3 model with ad1, (h) AlexNet model with ad1, (i) N1 model with ad2, (j) N2 model with ad2, (k) N3 model  with 

ad2, and (l) AlexNet with ad2. The abbreviations used for the classified output images about the Flavia dataset are introduced at the 

beginning of the Results and Discussion section. 
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Fig 10. Classified output images for 80% of training data with Flavia dataset using (a) N1 model with the dataset, (b) N2 model with the 

dataset, (c) N3 model with the dataset, (d) AlexNet model with the dataset, (e) Model N1 with ad1, (f) Model N2 with ad1, (g) Model N3 

with ad1, (h) Model AlexNet with ad1, (i) Model N1 with ad2, (j) Model N2 with ad2, (k ) Model N3 with ad2, (l) AlexNet with ad2 [21] 

Classification performance by models trained with dataset ad1 and ad2 was evaluated on the PV dataset using a confusion matrix as 

shown in Figure 11 for proposed models N1, N2, N3, and AlexNet. The confusion matrix provides insights into the classification and 

misclassification errors made by the models. Elements on the diagonal represent correct classifications, while off-diagonal elements 

represent misclassifications. Figure 11a illustrates the confusion matrix for the proposed N1 model trained on 80% of the dataset and 

tested on the remaining 20%. Diagonal elements indicate correct classifications for each class, highlighted in yellow-colored cells. 

 

Fig 11. Confusion Matrix for Models created with PV Dataset, a. Confusion Matrix for N1 with 80% Training Data, b. Effect of Data 

Augmentation on Confusion Matrix with ad1 and ad2 for PV Dataset. 

 

Figure 11b illustrates the influence of data augmentation on the confusion matrices of models N1, N2, N3, and AlexNet using ad1 and 

ad2. Negative values indicate a decline in classification performance, while positive values indicate an improvement. Cells shaded in 

green represent enhanced classification accuracy (percentage), whereas cells shaded in gray indicate the percentage of misclassifications 

following data augmentation. 
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It appears that the model performance is enhanced with training using augmented datasets. The proposed model N1's accuracy for the PV 

dataset is increased by 7.9% and 14.7% for the class "Ch" when trained with ad1 and ad2, respectively. The accuracy for the "Pep" class 

is improved by 10% and 24.3% for ad1 and ad2-trained models, respectively. Model N2's performance is enhanced by 11.3% and 21% 

for the "Pep" class with ad1 and ad2 training. The accuracy of model N2 is increased by 2% and 6% with ad1 and ad2 training, 

respectively, for the "To" class. Proposed model N3's accuracy is improved by 8.3% and 11% for the "Po" class with ad1 and ad2 

training. The accuracy of the "Pch" class is enhanced by 8.9% with ad2. AlexNet's performance is increased by 1.3% for the "Pch" class 

when trained with ad1. In the case of AlexNet trained with ad2, the accuracy of two classes, "A" and "S," is reduced. The accuracy 

performance for proposed models N1, N2, and N3 is observed to be enhanced for each class with ad2 training. 

The performance of models trained with datasets ad1 and ad2 is assessed using a confusion matrix on the Flavia dataset, presented in 

Figure 12 for the proposed model N1. Figure 12a displays the confusion matrix for model N1, trained with 80% of the dataset and tested 

with the remaining 20%. Correct classifications for each class are indicated by diagonal elements highlighted in yellow. Figure 12b 

illustrates the impact of data augmentation on the confusion matrix of models N1, N2, N3, and AlexNet with ad1 and ad2. Negative 

values denote a decrease in classification, while positive values indicate an increase. Cells shaded in green signify improved 

classification accuracy (percentage), whereas gray cells represent misclassification rates (percentage) post-data augmentation. 

 

Fig 12. Confusion Matrix for Models with Olivia Dataset, a. Confusion Matrix for N1 with 80% Training Data, b. Effect 

of Data Augmentation on Confusion Matrix with ad1 and ad2 for Flavia Dataset 

The proposed model N1's accuracy for the Flavia dataset improved by 5% and 12.4% for the "CR" class when trained with ad1 and ad2, 

respectively, and by 10.8% and 16% for proposed model N2. The accuracy for the "CT" class improved by 7.5% with ad1 and 20.4% 

with ad2 for proposed model N1. Model N2's performance improved by 7% and 13% for the "GMT" class when trained with ad1 and ad2. 

The proposed model N3's accuracy increased by 19.3% for the "CC" class when trained with ad2. AlexNet's performance improved by 

5.8% and 5.7% for the "YPP" class when trained with ad1 and ad2, respectively. 

Data augmentation affects the average class precision [51], [52]. Based on the confusion matrix, macro recall, macro precision, macro F1 

score, and average accuracy metrics are evaluated for the PV and Flavia datasets. The performance parameters of the recommended 

model N1, model N2, model N3, and AlexNet are shown in Table 6. Macro recall, macro precision, macro F1 score, and average 

accuracy metrics for the PV and Flavia datasets are compared here for data, ad1, and ad2. Performance parameters are enhanced with ad2. 

Developed models N1, N2, and N3 show comparable performance ranges to AlexNet. These models are significantly more compact than 

AlexNet and deliver good results. 

Table 6. Performance parameters of N1 model, N2 model, N3 model, and AlexNet trained with data, ad1, and ad2 

Data Model Data Macro Recall Macro Precision Macro F1_score Mean Accuracy 

 PV 

N1 

data 87.76% 86.58% 86.57% 99.16% 

ad1 89.50% 89.31% 89.26% 99.33% 

ad2 99.45% 99.45% 99.45% 99.97% 

N2 

data 92.35% 92.03% 91.95% 99.50% 

ad1 91.54% 90.83% 90.83% 99.43% 

ad2 99.65% 99.65% 99.65% 99.98% 

N3 

data 90.20% 89.61% 89.57% 99.35% 

ad1 90.32% 89.80% 89.71% 99.36% 

ad2 99.55% 99.55% 99.55% 99.97% 

AlexNet data 98.60% 98.53% 98.52% 99.91% 
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ad1 98.99% 98.98% 98.98% 99.94% 

ad2 99.74% 99.73% 99.73% 99.98% 

Flavia 

N1 

data 94.54% 94.30% 94.30% 99.64% 

ad1 86.43% 85.63% 85.45% 99.10% 

ad2 99.18% 99.17% 99.17% 99.95% 

N2 

data 96.05% 95.91% 95.91% 99.74% 

ad1 90.49% 89.77% 89.76% 99.36% 

ad2 99.59% 99.59% 99.59% 99.97% 

N3 

data 93.99% 93.83% 93.80% 99.61% 

ad1 88.49% 87.99% 87.76% 99.25% 

ad2 99.37% 99.36% 99.36% 99.96% 

AlexNet 

data 99.50% 99.48% 99.48% 99.97% 

ad1 99.02% 98.93% 98.93% 99.93% 

ad2 99.87% 99.87% 99.87% 99.99% 

 

Analysis of variance (ANOVA) was developed by [53] to analyze the experimental design results using statistical tests . ANOVA was 

conducted on performance parameters for the recommended models, and AlexNet trained with datasets ad1 and ad2 from both datasets, 

as shown in Tables 7, 8, and 9. Evaluated parameters include the Sum of Squares (SS), degrees of freedom (df), Mean Square (MS), p-

value, F-value, and critical F-value. The significance of statistical conditions is assessed based on the p-value, where a smaller F-value 

compared to the critical F-value indicates statistical significance. If the p-value ranges from 0.0001 to 0.001, it is highly statistically 

significant; from 0.001 to 0.01, it is very statistically substantial; from 0.01 to 0.05, it is statistically significant; and if the p-value is 

greater than 0.05, there is no statistical significance. Across the three ANOVA tables, we can observe the statistical significance of the 

evaluated models across both datasets. 

Table 7. ANOVA analysis of performance parameters evaluated for dataset [53] 

Source Ss Df Ms F P-Value F Critical Sign in 

Dataset 77.688 1 77.688 6.659 0.0164 4.259 ** 

Models 191.983 3 63.994 5.485 0.0051 3.009 *** 

Dataset × Models 24.687 3 8.229 0.705 0.5582 3.009 NS 

Within 279.985 24 11.666     

Total 574.343 31      

Table 8. ANOVA of performance parameters evaluated for ad1 [53] 

Source  Ss Df Ms F P-Value F Critical Sign in 

Dataset 12.276 1 12.276 0.604 0.4446 4.259 NS 

Models 366.819 3 122.273 6.015 0.0033 3.009 *** 

Dataset × Models 7.659 3 2.553 0.125 0.944 3.009 NS 

Within 487.848 24 20.327     

Total 874.602 31      

Table 9. ANOVA of performance parameters evaluated for ad2 [53] 

Source  Ss Df Ms F P-Value F Critical Sign in 

Dataset 4.43 × 10-6 1 4.43 × 10-6 0.816 0.3752 4.259 NS 

Models 6.23 × 10-5 3 2.08 × 10-5 3.829 0.0225 3.009 * 

Dataset × Models 1.13 × 10-5 3 3.77 × 10-6 0.696 0.5634 3.009 NS 

Within 0.0001 24 5.42 × 10-6     

Total 0.0002 31      

The ability of trained models to classify new data is crucial in decision-making. The PV dataset comprises nine classes representing nine 

plant species. Species classification for PV dataset images not included in the training and testing datasets has been completed. 

Validation accuracies of models N1, N2, N3, and AlexNet trained on the PV dataset are presented in Table 10. Images not part of the 

training and testing datasets were used for validation across each type. Pepper validation performance was lower compared to other 

species. The proposed model N2 classified pepper species with 92.5% accuracy, while model N2 and AlexNet classified apple species 

with 95% accuracy. Validation accuracy for corn was 97.5% for both model N2 and AlexNet. Grape, peach, and strawberry validation 

were excellent across all models. Model N3 achieved 91.11% validation accuracy for tomatoes. Overall, model N2 outperformed model 

N1 and N3 in performance. 

Table 10. Validation accuracy of the proposed N1 model, N2 model, N3 model, and AlexNet model trained with PV dataset [31] 

Species N1 N2 N3 AlexNet 

Apple 82.5% 92.5% 90% 100% 

Cherry 75% 95% 85% 95% 

Corn 95% 97.5% 90% 97.5% 

Grape 90% 97.5% 95% 100% 

Peach 80% 85% 90% 100% 
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Pepper 40% 60% 70% 100% 

Potato 73.33% 90% 86.67% 100% 

Strawberry 100% 90% 100% 100% 

Tomato 88.89% 84.44% 91.11% 95.56% 

Species classification for images in the Flavia dataset that were not part of the training and testing datasets has been completed. The 

Flavia dataset includes 32 classes representing different plant species. Validation accuracies of the proposed model N1, model N2, model 

N3, and AlexNet trained on the Flavia dataset are shown in Table 11. Nearly all species showed good classification except for  the Cam 

class. Overall, model N2 performed equally well as AlexNet. Model N2 achieved superior classification performance and validation for 

both PV and Flavia datasets with compact model sizes. 

Table 11. Validation accuracy of the N1 model, N2 model, N3 model, and AlexNet model trained with the Flavia dataset [31] 

Species N1 N2 N3 AlexNet 

AB 100% 60% 80% 100% 

BB 100% 100% 100% 100% 

BFH 100% 100% 100% 100% 

CA 100% 100% 100% 100% 

Cam 10% 10% 10% 50% 

CC 60% 50% 50% 100% 

CHC 80% 90% 90% 100% 

CM 100% 100% 100% 100% 

CP 100% 100% 100% 100% 

CR 90% 80% 90% 100% 

CT 30% 30% 20% 80% 

CTT 100% 100% 100% 100% 

D 90% 100% 90% 100% 

FW 90% 90% 90% 100% 

GMT 100% 100% 100% 100% 

GP 100% 100% 100% 100% 

GT 80% 50% 70% 100% 

JA 100% 100% 100% 100% 

JC 50% 50% 60% 80% 

JFC 50% 60% 60% 100% 

JM 100% 100% 100% 100% 

N 90% 90% 90% 100% 

O 100% 100% 100% 100% 

P 100% 100% 100% 100% 

PB 50% 70% 60% 90% 

SM 40% 70% 40% 100% 

SO 70% 60% 70% 90% 

T 70% 90% 90% 100% 

TI 90% 100% 90% 100% 

TM 90% 80% 90% 100% 

W 90% 90% 90% 100% 

YPP 30% 90% 20% 70% 
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The proposed model demonstrates strong performance in classifying plant leaves. The subsequent model will focus on diagnosing 

diseases affecting tomato plant leaves. Image data was sourced from tomato farms in Lavale, Pune, India, captured using a Super Speed 

Dual Pixel 12MP AF sensor smartphone camera, with the background around tomato plant leaves. In practical scenarios, input images 

may vary in quality. Each of the four classes comprised 300 images, totaling 126,000 images. Augmented images were utilized to train 

both the proposed model and AlexNet. The dataset includes various tomato plant diseases, including tomato leaf blight, leaf miner, 

yellow leaf curl virus (YLCV), and healthy leaves. Figure 13 displays images of these diseases affecting tomato plants and the healthy 

class dataset from Lavale Agriculture. 

 

Fig 13. Image of Plant Leaves from Lavale [5] 

The classification accuracy of the recommended models and AlexNet is shown in Figure 14. The proposed N1 model achieved an 

accuracy of 99.864%, N2 achieved 99.59%, N3 achieved 99.63%, and AlexNet achieved an accuracy of 99.35%. Model N1 required 

22.82% training time, N2 required 56.18%, and N3 required 25.73% less training time than AlexNet. N1 and N3 models were 99.06% 

compact, while N2 was 98.11% compact compared to AlexNet. The performance of the recommended models demonstrates their 

capability to classify images of tomato plant diseases with complex backgrounds with very high accuracy, shorter training times, and 

compact model sizes. These recommended models are highly compact and require less training than advanced models. They can be 

deployed as standalone mobile applications that benefit farmers with their results. 

 

Fig 14. Model classification accuracy graph for the Lavale agricultural dataset [5] 

4. Conclusion  

Classification of plant leaf images from the nine-class PV database was performed using the recommended CNN models: N1, N2, N3, 

and AlexNet with transfer learning in this study. The developed models showed improved performance after data augmentation was 

applied. The achieved accuracies for the developed models were 99.45% for N1, 99.65% for N2, 99.55% for N3, and 99.73% for 

AlexNet on the PV dataset. The accuracy of the Flavia dataset with 32 classes was 99.17% for N1, 99.59% for N2, 99.36% for N3, and 

99.87% for AlexNet. The developed models achieved accuracies comparable to AlexNet. Proposed models N1 and N3 were 92.67% 

more compact than AlexNet, and N2 was 85.3% more compact. Training time for the developed models was reduced by 34.58% for N1, 

18.25% for N2, and 20.23% for N3 compared to AlexNet. N2 showed a compact size compared to AlexNet while maintaining similar 

range accuracy. These trained models classified species on images from the PV and Flavia datasets that were not included in model 

training and testing. Overall, the N2 model's performance surpassed that of the N1 and N3 models. Experiments on these challenging 

datasets, PV and Flavia, confirmed the effectiveness of our method. The uniqueness of the recommended models lies in classifying 

diseased plant leaves in images taken with mobile phones. The proposed model can be a standalone mobile application benefiting 

farmers due to its compact size and excellent classification results. Automated plant classification will aid in plant management, 

benefiting society. 
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