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Abstract

The global transition toward sustainable energy necessitates intelligent, integrated solutions to overcome the intermittency of renewable
sources. This paper presents and validates a comprehensive framework for optimising Hybrid Solar-Wind Energy (HSWE) systems by
integrating advanced simulation, machine learning-based forecasting, and metaheuristic optimisation. Using meteorological and
operational data from three distinct climate zones, we modelled and analysed a PV-wind-lithium-ion hybrid system. A neural network
was employed for precise load forecasting, while Particle Swarm Optimisation (PSO) managed real-time resource allocation and storage
dispatch. Comparative analysis reveals that the optimised hybrid system significantly outperforms standalone units, increasing energy
production by up to 32%, improving overall energy efficiency to 92.3%, and reducing operational costs by over 36%. The simulation
models demonstrated high fidelity, with predictions matching experimental field data with less than 1% error. Furthermore, the
integration of predictive fault handling and intelligent load balancing enhanced system reliability, increasing the mean time between
failures (MTBF) by over 70% and achieving 97.6% system availability. This research provides a validated, replicable framework for
engineers and policymakers, demonstrating a practical pathway to developing efficient, economically viable, and resilient decentralised
renewable energy infrastructure to meet global sustainability goals.

Keywords: Hybrid Renewable Energy System, Solar-Wind Optimisation, Neural Network Forecasting, Particle Swarm Optimisation,
Intelligent Energy Management.

1. Introduction

The increasing global demand for energy, coupled with pressing environmental concerns, has accelerated the transition to sustainable
energy systems. Renewable sources like solar and wind are at the forefront of this shift, offering a path to reduce greenhouse gas
emissions. However, their inherent variability and intermittency create significant barriers to integration within existing energy
infrastructures. Overcoming these challenges requires advanced algorithms and models to improve the performance and resilience of
renewable energy systems [1]. Optimisation is crucial for scheduling and allocating energy resources to minimise costs, maximise
performance, and reduce emissions. Traditional optimisation methods, however, struggle with the complex dynamics and uncertainties of
modern energy systems dominated by renewables. This has driven the adoption of advanced computational techniques, including
machine learning and Al algorithms, which can process large-scale data, enable real-time decision support, and enhance the flexibility of
energy systems [2].

Hybrid Renewable Energy Systems (HRES), which combine multiple renewable sources, have emerged as a promising solution. The
performance of these systems can be significantly enhanced through smart algorithms and efficient resource management. For instance,
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real-time optimisation informed by advanced analytics has been shown to improve the cost-effectiveness and generation capacity of
hybrid solar-wind systems, while similar intelligent controls have boosted energy efficiency in building management [3]. Effective
optimisation relies on sophisticated modelling, which provides a virtual environment to simulate, analyse, and iterate on system designs
and operational strategies [4]. Modern modelling methods have expanded the scope of energy optimisation by integrating complex
variables such as weather patterns, energy demand, and infrastructure constraints. However, developing scalable and practical solutions
for large-scale implementation remains a critical goal [5]. This study addresses this need by presenting a comprehensive framework that
synergises advanced algorithms and system-wide modelling to optimise HRES, aiming to deliver tangible improvements in energy
efficiency, reliability, and cost-effectiveness.

2. Literature Review

The optimisation of sustainable energy systems is an area of growing research interest, focusing on enhancing efficiency, reliability, and
the integration of renewable resources. Advanced algorithms and modelling methodologies are recognised as key to addressing the
challenges posed by the intermittent nature of renewable energy generation [6].

2.1. Machine Learning for Energy Optimisation

Machine learning (ML) has emerged as a transformative technology for energy system optimisation. ML algorithms excel at analysing
vast datasets of energy production and consumption to enable more effective energy management. For example, reinforcement learning-
based solutions have been successfully used to improve energy consumption efficiency in smart spaces. Data-driven systems powered by
ML have proven to be more efficient at optimisation, facilitating intelligent decisions regarding energy distribution and consumption [7].
The application of ML in this domain often involves supervised learning techniques, such as regression for forecasting energy demand
and generation, or classification for identifying operational states and predicting faults. By training on historical data, these models can
uncover complex, non-linear relationships that traditional statistical methods might miss. This leads to more accurate predictions and a
deeper understanding of system dynamics, which are essential for proactive rather than reactive energy management. The ability to
process high-dimensional data from various sources simultaneously allows for a holistic view of the energy ecosystem. Furthermore,
reinforcement learning (RL) offers a particularly powerful paradigm for dynamic control. In an RL framework, an "agent" (the energy
management system) learns to make optimal decisions by interacting with its "environment" (the physical energy system and grid) to
maximise a cumulative "reward" (e.g., minimised cost or maximised renewable usage). This approach enables the development of
adaptive control strategies that can adjust to unforeseen conditions and optimise for long-term performance, moving beyond the
limitations of rule-based systems and making intelligent, autonomous operation a reality [7].

2.2. Optimisation of Hybrid Renewable Energy Systems

Hybrid Renewable Energy Systems (HRES), which combine sources like solar, wind, and biogas, have been optimised using various
advanced algorithms. Metaheuristic approaches, such as the Pelican Optimisation Algorithm (POA), have been instrumental in the
optimal sizing of these systems, ensuring continuous operation and high performance. Additionally, bilevel optimisation has been applied
to HRES design to simultaneously address objectives like energy efficiency, environmental impact, and economic feasibility [8].
Metaheuristic algorithms are particularly well-suited for the complex problem of HRES design, which involves a large search space of
possible component combinations and sizes. These population-based methods, inspired by natural phenomena, can efficiently explore
this space to find near-optimal solutions without getting trapped in local optima. By iteratively refining a set of candidate solutions, they
can balance trade-offs between capital costs, operational efficiency, and system reliability to identify robust configurations that meet
specific performance criteria. Bilevel optimisation provides a hierarchical framework for tackling problems with multiple, often
conflicting, objectives and decision-makers. In the context of HRES design, the upper level might focus on minimising the lifecycle cost
of the system, while the lower level optimises the real-time operational dispatch to maximise efficiency or minimise emissions. This
structure is effective for modelling the intricate interplay between long-term planning decisions and short-term operational control,
leading to designs that are not only economically sound but also technically robust and environmentally sustainable [8].

2.3. Distributed Optimization and Advanced Modeling

To manage the complexities arising from high renewable penetration in energy grids, distributed optimisation techniques have been
investigated. Methods like the Alternating Direction Method of Multipliers (ADMM) and Augmented Lagrangian Alternating Direction
Inexact Newton (ALADIN) have been used to solve power flow challenges in distributed environments, thereby improving the
scalability and elasticity of energy systems [9]. Modelling is also critical for understanding and optimising energy systems, with
techniques like model-adaptive clustering and simulation platforms being used to manage uncertainty and develop optimal policies [10].
The need for distributed optimisation arises from the increasing decentralisation of energy resources. As countless solar panels, batteries,
and electric vehicles connect to the grid, centralised control becomes computationally infeasible and creates a single point of failure.
Distributed methods overcome this by breaking a large-scale optimisation problem into smaller, interconnected subproblems that can be
solved locally by individual agents. These agents then coordinate to reach a globally optimal solution, resulting in a system that is more
scalable, resilient, and respectful of data privacy [9]. High-fidelity modelling and simulation are the bedrock upon which these
optimisation strategies are built and validated. Simulation platforms allow researchers and engineers to test control algorithms across a
wide range of "what-if" scenarios—from extreme weather events to grid faults—without jeopardising physical infrastructure. Techniques
such as model-adaptive clustering help manage the inherent uncertainty in renewable generation by grouping similar operational
conditions, making the optimisation problem more computationally tractable. This synergy between advanced modelling and
optimisation is essential for de-risking new technologies and developing robust control strategies for future energy systems [10].

2.4. The Role of IoT and Real-Time Control

The convergence of Internet of Things (IoT) sensor systems with modern communication technologies has further advanced power
optimisation. These technologies enable real-time monitoring and control, which are foundational for implementing intelligent energy
management strategies and promoting the development of sustainable smart environments [11][12][13][14]. The proliferation of low-cost
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IoT sensors allows for the collection of high-resolution data from every part of the energy system. Sensors can measure solar irradiance,
wind speed, ambient temperature, battery state-of-charge, and real-time energy consumption at a granular level. This stream of data
provides the essential inputs for the machine learning models and optimisation algorithms discussed previously. Without accurate, real-
time data, any attempt at intelligent control would be based on stale or incomplete information, severely limiting its effectiveness. This
sensor data is transmitted via robust communication networks to local controllers or cloud-based platforms, enabling a closed-loop
control system. The energy management system can thus react dynamically to changing conditions, such as a sudden drop in solar
generation or a spike in demand, by adjusting battery dispatch or curtailing non-essential loads. This capability for real-time monitoring
and automated control is what transforms a static collection of renewable assets into an intelligent, responsive, and truly smart energy
ecosystem [11][12][13][14]. In summary, the literature indicates a clear trend toward leveraging the synergy between advanced
algorithms, machine learning, distributed optimisation, and sophisticated modelling to enhance sustainable energy systems. These
advancements are paving the way for more efficient, reliable, and resilient energy infrastructures that can support the global transition to
renewable sources.

3. Methods

This study employs a comprehensive methodological framework to design, simulate, and validate an optimised hybrid sustainable energy
system. The approach integrates meteorological data analysis, advanced algorithmic optimisation, dynamic system simulation, and
experimental validation to create a robust and replicable model. The methodology is executed in four primary stages: data collection,
algorithmic design, system simulation, and experimental validation.

3.1. Meteorological and System Data Collection

To ground the study in realistic environmental conditions, meteorological data were collected from three distinct climatological zones in
Iraq: Al Anbar (Site A), Basrah (Site B), and Erbil (Site C). Each location represents a unique climatological zone with implications for
system design.

Inputs: I, Vivina: Tampiens — Forecasted Ppy, Pying

Table 1. Meteorological Data for Renewable Energy Sites

Location Solar Irradiance (kWh/m?day) Average Wind Speed (m/s) Temperature Range (°C)
Site A — Al Anbar 5.2 4.8 18-30
Site B — Basrah 4.5 3.5 15-28
Site C — Erbil 5.8 6.2 20-33

These measurements formed the boundary conditions for hybrid energy simulations involving solar photovoltaic and wind turbine
generation systems [1][4].

3.2. Optimisation Algorithms Design

Three advanced computational algorithms were designed and implemented to optimise different facets of the energy system: a Neural
Network (NN) for predictive forecasting, a Genetic Algorithm (GA) for system sizing, and Particle Swarm Optimisation (PSO) for real-
time dispatch.

3.2.1. Genetic Algorithm (GA)
A feedforward neural network was developed to accurately predict hourly energy demand. The model was trained on historical load data,
and its performance was optimised by minimising a loss function (L) that includes L2 regularisation to prevent overfitting:

T
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3.2.2. Particle Swarm Optimisation (PSO)

PSO updates storage sizing and dispatch through collective intelligence dynamics:
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Where inertia governs the convergence-exploration tradeoff, and 1, ~ U(0,1).

3.2.3. Neural Network (NN) Forecasting

A feedforward neural network predicts hourly demand using:
m
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Where 3. is the predicted demand and y, The actual. L2 regularisation controls overfitting.
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Table 2. Algorithm Implementation Parameters

Algorithm Population/Swarm Size Max Iterations  Training Ratio  Learning Rate
Genetic Algorithm 100 200 N/A N/A
Particle Swarm Opt. 50 200 N/A N/A
Neural Network (MLP) N/A 500 epochs 70% 0.01

These algorithms were configured and executed using MATLAB and Python-based environments [2][15][16][17].

3.3. Hybrid Energy System Simulation

A dynamic simulation model of the hybrid energy system was developed, incorporating the solar PV and wind generation components, a
Lithium-ion battery for energy storage, and variable load profiles. The system's energy balance was governed by the following core
equations:

Pretr = Ppvi + Pwinar + Periar — Proadr (6)
Energy balance:
_ Paise * At
Ebat,t+1 - Ebat,t +Nen - Pch,t - At — T (7
Ls

Where p,., . n,,;. Charge/discharge efficiencies; A¢ 1-hour timestep. Load behaviour was modelled via Gaussian Mixture Models to capture
day-night cycles and stochastic variability [3][5][7].

3.4. Experimental Setup Configuration
To validate the simulation framework and the performance of the optimisation algorithms, a physical hardware testbed was constructed.
The experimental setup mirrored the simulated hybrid system.

Table 3. Specifications of the Experimental System Components

Component Specification
Solar PV Panels 300W/panel x 20 panels
Wind Turbine 2.5 kW, Horizontal Axis

Battery Storage 15 kWh, Lithium-Ilon
Inverter Efficiency  94%

Real-time operational parameters from the testbed were logged and streamed to a cloud-based analytics platform. This created a closed
feedback loop, allowing for continuous data collection for model training and direct comparison between simulated and measured results

[6][11][18].

3.5. Algorithmic Framework for Optimisation

To achieve operational excellence, this study employs a multi-layered algorithmic framework designed to optimise the hybrid energy
system across different timescales. Three distinct computational methods were selected for their proven effectiveness in solving specific
energy management challenges: a Genetic Algorithm (GA) for strategic resource allocation, Particle Swarm Optimisation (PSO) for
tactical dispatch control, and a feedforward Neural Network (NN) for predictive demand forecasting. The integration of these algorithms
enables a multidimensional optimisation strategy that enhances energy security, reduces operational costs, and increases overall system
reliability.

3.5.1 Genetic Algorithm for Strategic Sizing

For long-term planning and system design, a Genetic Algorithm (GA) was implemented to solve the complex optimisation problem of
component sizing and resource allocation. The GA is particularly effective for this task due to its ability to explore a vast and complex
solution space without being constrained by local optima. By simulating the principles of natural selection—including selection,
crossover, and mutation—the algorithm iteratively evolves a population of potential solutions to identify the optimal generation and

storage architecture that minimises lifecycle costs while satisfying energy balance constraints. This process, detailed in the flowchart in
Figure 1, makes the GA an ideal tool for high-level, multi-objective energy planning [12][19][20][21][22].

Initialize Population
Evaluate Fitness

Termination

Criteria Met?
No

Select Parents

Fig 1. Genetic algorithm flowchart for load allocation and sizing
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3.5.2 Particle Swarm Optimisation for Real-Time Dispatch

For tactical, moment-to-moment operational control, Particle Swarm Optimisation (PSO) was utilised as the primary engine for real-time
energy dispatch and storage management. Governed by principles of swarm intelligence, the PSO algorithm's population-based search
mechanism offers rapid convergence and high adaptability to dynamic environmental inputs. Compared to the GA, PSO demonstrated
superior computational efficiency during simulation trials, making it the preferred choice for integration into the experimental platform's
control logic. The operational flow of the PSO algorithm—from particle initialisation to the iterative updating of velocity and position—
is depicted in Figure 2 and reflects current best practices in the optimisation of hybrid energy systems [23].

Evaluate objective
function

Stopping
criterion
met?

position

Return best
solution

Fig 2. Particle Swarm Optimisation structure for storage and dispatch optimisation

[ Update velocity and ]

3.5.3 Neural Network for Demand Forecasting

Accurate demand forecasting is critical for proactive energy management. To this end, a feedforward Neural Network (NN) was
developed to predict short-term load profiles. The model was structured as a Multilayer Perceptron (MLP) with two hidden layers and
sigmoid activation functions, a configuration well-suited for capturing complex temporal patterns in energy consumption data [2][24].
The NN was trained using both historical demand data and meteorological inputs to anticipate load changes and inform downstream
generation and storage decisions. As illustrated in the corresponding flowchart (Figure 3), the MLP architecture processes inputs through
successive neuron layers to produce an accurate demand forecast. Each algorithm was implemented within a modular simulation
framework, which allowed for their performance to be compared and hybridised. This architecture enabled a comprehensive assessment
based not only on statistical accuracy metrics (MAPE, RMSE, R?) but also on real-world operational criteria, including energy
curtailment, cost savings, and system resilience. The synergy between the predictive NN and the responsive PSO models proved
particularly effective for real-time adaptive control, highlighting their value as intelligent tools for managing hybrid renewable systems.

Input

Hidden
Layer

[Neuron] [Neuron]

Hidden
Layer

[Neuron] [Neuron]

Output

Layer Out‘put

Output
y

Fig 3. Neural network architecture for short-term load forecasting
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4. Result and Discussion

The article provides an in-depth evaluation of the hybrid solar-wind energy system following the improved methodological design. It
covers site-specific energy production, system efficiency and cost metrics, algorithmic performance comparisons, field validation results,
and system reliability analysis. The following findings are derived from simulated outputs, experimental data collected from the Erbil
testbed, and algorithmic benchmarking under identical environmental and operational conditions. This multi-dimensional analysis
confirms the technological, economic, and environmental benefits of deploying hybrid systems optimised using advanced modelling and
intelligent control strategies.

4.1. Energy Production and Resource Utilisation

Electricity generation capacity in three separated locations in Iraq (Site A: Al Anbar, Site B: Basrah and Site C: Erbil) was assessed,
where each location represented a different climatic zone. Meteorological data — Solar and wind irradiance were retrieved and treated to
estimate hourly generation of renewable energy (photovoltaic modules and wind turbines). It was assessed the ability of the hybrid
system to consolidate and buffer the renewable sources with storage and with dispatch control. The two hybrids generated power output
from system A and system B were also compared with the power outputs of two stand-alone systems of solar and wind to evaluate the
hybridisation performance at each location.

m== Solar PV Output (kWh)
= Wind Turbine Qutput (kWh)
9000 mmm Hybrid System Output (kWh)

Site A - Al Anbar

12860

Site B - Basrah

14025

0 2000 2000 6000 8000 10000 12000 14000
Output (KWh)

Fig 4. Total annual energy production by region and system type
The hybrid system performed better than the use of any single renewable source in all the sites tested. For Al Anbar, the system yielded
12,860 kWh in combined production , approximately 30% greater than the best-performing stand-alone system. Basrah, where average
wind speeds are lower, still exhibited a 31% gain from the hybridisation, indicating the solar generation compensatory advantage. Erbil
was the city that achieved the best overall production with 14,025 kWh, a 32% increase due to its abundant solar radiation and wind
speed. These findings demonstrate that hybrid systems can exploit environmental complementarities to achieve the highest energy yields
in region-specific scenarios.

4.2. System Efficiency and Economic Performance

The efficiency of the system and operation cost were investigated to assess the viability of the large-scale application of the hybrid
model. Efficiency is the energy output over input resources, and cost per kilowatt-hour is determined based on lifecycle maintenance,
storage degradation and energy loss. Environmental impact was measured as CO2 reductions due to the displacement of fossil fuel
electricity. A detailed comparison had been made with other individual systems under the same demand scenarios and installed
capacities to provide an evaluation of operational benefits, as well as performance comparisons.
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Fig 5. Efficiency, cost, and coz reduction by system type
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The hybrid option was found to use the most energy efficient (92.3%), which was 16.5% higher than the best option for standalone.
Operational expenses were reduced almost by half for CSP ($0.075 per kWh) in contrast to solar and wind-only solutions ($0.118 and
$0.134 per kWh, respectively). This corresponds to a lesser curtailment, a better storage pumping-turbine efficiency and the reduction of
the unmet load penalties. In addition, the hybrid system achieved a 19.8% decrease in CO: emissions originating from increased
renewable penetration as well as a decreased need for fossil backup power. These results prove the optimised hybrid solution to be not
only technically better, but also more economically and environmentally profitable.

4.3. Optimisation Algorithm Performance
Three computational models, the Genetic Algorithm (GA), the Particle Swarm Optimisation (PSO) and a feedforward Neural Network
(NN), were compared in terms of input load, environmental uniformity and synchronised training data. Convergence time was used to
demonstrate computational efficiency, while solution quality and statistical metrics (MAPE, RMSE and R?) were used to evaluate
forecasting and dispatch accuracy. The comparison indicates the algorithm’s readiness for implementation in hybrid energy system
supervisory and long-term energy-planning tools.

Table 4. Algorithm Accuracy and Runtime Metrics

Algorithm Convergence Time (s)  Solution Quality (%) MAPE (%) RMSE (kWh) R?
Genetic Algorithm 115 91.5 4.2 1.45 0.93
Particle Swarm Opt. 81 93.2 3.6 1.29 0.96
Neural Network (MLP) 160 97.8 2.9 1.18 0.98

The highest performance was obtained by the neural network (solution quality = 97.8%; MAPE = 2.9%; R? = 0.98). Despite its high
energy demand forecasting accuracy, it requires a longer convergence time of 160 seconds. PSO struck a good trade-off between speed
and accuracy; its running time is as short as 81s, and the quality of the intermediate result is up to 93.2%. GA was slightly inferior in all
the measures of performance. These findings indicate that, even though NN has a higher predictive accuracy than PSO, PSO is more
suitable for real-time, embedded control services.

4.4. Validation of Simulation Accuracy

Simulation results were verified with real measurements obtained from the Site C (Erbil) hybrid system. Information comprised overall
energy production, efficiency of the system, and the amount of CO: saved in four weeks. This verification determines if the simulation
framework, algorithms, and input assumptions accurately duplicate reality or not. The calibration sensor of the testbed was integrated
and synchronised with real-time weather feeds in order to verify the input data. The simulation was executed using the same parameters
and time intervals for direct one-to-one comparison.
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Fig 6. Field validation: simulated vs. measured results (site C — Erbil)
The simulation closely replicated actual field performance, with minimal deviation. Energy output differed by only 0.32%, while
efficiency and CO: reduction values were within 0.76% and 0.30%, respectively. This validates the robustness of the simulation model in
predicting system behaviour under varying resource and load conditions. The negligible errors confirm the effectiveness of the neural
network-based demand forecasting and PSO-driven dispatch algorithms integrated into the simulation. These results demonstrate that the
improved methodology can serve as a reliable platform for decision-making, performance forecasting, and design optimisation of hybrid
energy installations.

4.5. System Reliability and Availability Assessment

In addition to energy-based metrics, operational dependability is a key criterion for assessing the robustness of hybrid systems,
particularly for off-grid or mission-critical applications. The system reliability due to optimisation was investigated by MTBF, MTTR
and the overall system availability. These constants were obtained from 12 months of logs from the Erbil testbed and simulation-based
failure injection scenarios. Improvements were achieved through the incorporation of fault-tolerant control logic, advanced load
scheduling technologies and intelligent pattern recognition techniques into the algorithmic framework.
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Fig 7. Reliability metrics before and after optimisation
The result of the optimisation was an increased robustness, with the mean time between failure (MTBF) growing from 300 to 520 hours,
and the mean time to repair (MTTR) dropping by 55%, indicating the possibility of predicting and handling faults with intelligent
control algorithms. Enhanced system availability from 93.2% to 97.6% provided less downtime, as energy was delivered in a more
controlled manner. These improvements are essential in remote or unconcealed installations where system self-recovery, uptime and
reliability can affect energy security. The results prove that production optimisation approaches not only reduce cost and enhance
efficiency, but also enhance the reliability of the system under real operating conditions of diverse renewable energy sources.

4.6. Discussion

The findings of this study validate the effectiveness of the proposed hybrid solar-wind energy system, which was optimised using a
sophisticated algorithmic framework and verified through extensive simulation and field experimentation. This section discusses the
implications of these results, contextualises them within the existing literature, acknowledges the study's limitations, and suggests
directions for future research.

4.6.1 System Performance and Economic Viability

The results demonstrate significant performance gains achieved through hybridisation and intelligent control. The high energy production
levels, particularly in Erbil (over 14,000 kWh), confirm that combining complementary renewable sources under a smart management
system can yield substantial output, with increases of 30-32% compared to standalone systems. These findings align with the broader
literature emphasising the need to integrate renewables to mitigate intermittency and enhance energy yield. Specifically, this work builds
upon the research of Abdullah et al by not only using machine learning for sizing and cost optimisation but also by integrating neural
networks and PSO for predictive control, leading to superior energy production and economic benefits [3]. From an economic standpoint,
the hybrid system achieved an energy conversion rate of 92.3% and delivered electricity at a significantly lower cost ($0.075/kWh)
compared to standalone solar ($0.118/kWh) and wind ($0.134/kWh) options. This cost reduction is consistent with recent findings by
Konneh et al, who demonstrated that advanced computational approaches can lower the cost of complex multi-source systems through
improved dispatch and storage coordination [6]. Furthermore, the nearly 20% reduction in CO- emissions supports the environmental
sustainability objectives highlighted in recent bibliometric analyses of renewable integration studies [4].

4.6.2 Algorithmic Performance and Model Validation

The comparative analysis of the algorithms revealed that the neural network model provided the highest predictive accuracy
(MAPE=2.9%, R?>=0.98), confirming its suitability for energy demand forecasting. However, the PSO algorithm offered the best balance
of computational speed and accuracy, making it ideal for real-time control applications. This observation is supported by Houssein et al,
who noted the versatility of PSO in energy management [24]. The successful blend of predictive modelling (NN) and metaheuristic
optimisation (PSO) in this study directly answers the call from Forootan et al for combining machine learning with evolutionary
computing to achieve greater energy intelligence [2]. The high fidelity of the simulation framework was confirmed through field
validation at the Erbil testbed. With error margins below 1% for key metrics like energy output and efficiency, the simulation results
proved to be highly representative of real-world performance. This successful validation was attributable to precise meteorological
modelling and iterative, algorithm-based control. These results echo the validation-centric work of researchers like Clément and Ipek,
who have also emphasised the importance of corroborating simulation credibility with experimental measurements to de-risk energy
system development [25][26][27].

4.6.3 System Reliability and Resilience

Beyond performance metrics, this study addressed the critical factor of system reliability. The implementation of the optimisation
framework led to a significant increase in resilience, with the Mean Time Between Failures (MTBF) improving by over 70% and overall
system availability reaching 97.6%. These enhancements are a direct result of integrating predictive maintenance logic and intelligent
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control algorithms into the system model, aligning with the work of Sonawane et al, who highlighted the importance of robust
operational planning and fault analysis in enhancing the reliability of large-scale solar projects [28].

4.6.4. Limitations and Future Research Directions

Despite the positive outcomes, this study has several limitations. First, the analysis did not explicitly account for extreme seasonal
variations or sudden demand surges, which could impact the generalizability of the findings in regions with highly variable climates, a
limitation also noted by Rahman et al in their work on hybrid microgrids [8]. While the neural network model was highly accurate, its
training time may pose a challenge for real-time applications in resource-constrained environments, a constraint also observed by
Recalde et al in the context of electric vehicles [7]. A second limitation is the assumption of uniform component degradation. The
efficiency of batteries and inverters declines over time, and future models should incorporate real-time wear modelling, as suggested by
Ogunmodede et al, to improve lifecycle analysis [5]. Finally, the economic model did not include complex financial factors such as
inflation or dynamic tariffs. As highlighted by Alturki and Awwad, more sophisticated financial instruments are needed for more
representative LCOE calculations [3]. Future work should address these issues by incorporating seasonal demand forecasting, adaptive
control based on hardware lifecycle, and more detailed financial analysis. Further research could also explore integrating IoT and edge
computing for decentralised control [29] or expanding the model to include multi-objective optimisation frameworks that balance
economic, environmental, and efficiency trade-offs [23][30]. In conclusion, this research provides a technically robust and empirically
validated pathway for optimising hybrid solar-wind energy systems. It contributes to the literature on smart renewable energy integration
by successfully blending precise prediction, high-fidelity simulation, and real-world validation, offering a replicable foundation for
designing the next generation of resilient and intelligent energy infrastructure.

5. Conclusion

This study successfully developed and validated a comprehensive framework for designing and optimising hybrid solar-wind energy
systems. By integrating advanced simulation with intelligent algorithms—specifically machine learning for forecasting and swarm
optimisation for dispatch—we demonstrated significant enhancements in energy delivery, cost-effectiveness, and operational reliability.
The research provides a practical, validated approach that bridges the gap between theoretical modelling and the real-world
implementation of decentralised renewable energy systems. The proposed framework effectively addressed key technical challenges,
including resource intermittency and load balancing, with control strategies that were validated against field data, confirming the model's
high fidelity. The integration of predictive analytics and fault-tolerant controls resulted in a notable increase in system resilience and
availability. The results confirm that integrating algorithmic control into the early design stages is critical for optimising the technical,
economic, and environmental performance of next-generation sustainable energy infrastructures. Future research should focus on
expanding this framework by incorporating real-time edge computing and IoT sensors for greater autonomy. Further work could also
involve extending the model to include other renewable sources and storage technologies, developing adaptive degradation models for
key components to improve lifecycle forecasting, and applying multi-objective optimisation to address more complex deployment
scenarios.
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