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Abstract 

The global transition toward sustainable energy necessitates intelligent, integrated solutions to overcome the intermittency of renewable 

sources. This paper presents and validates a comprehensive framework for optimising Hybrid Solar-Wind Energy (HSWE) systems by 

integrating advanced simulation, machine learning-based forecasting, and metaheuristic optimisation. Using meteorological and 

operational data from three distinct climate zones, we modelled and analysed a PV-wind-lithium-ion hybrid system. A neural network 

was employed for precise load forecasting, while Particle Swarm Optimisation (PSO) managed real-time resource allocation and storage 

dispatch. Comparative analysis reveals that the optimised hybrid system significantly outperforms standalone units, increasing energy 

production by up to 32%, improving overall energy efficiency to 92.3%, and reducing operational costs by over 36%. The simulation 

models demonstrated high fidelity, with predictions matching experimental field data with less than 1% error. Furthermore, the 

integration of predictive fault handling and intelligent load balancing enhanced system reliability, increasing the mean time between 

failures (MTBF) by over 70% and achieving 97.6% system availability. This research provides a validated, replicable framework for 

engineers and policymakers, demonstrating a practical pathway to developing efficient, economically viable, and resilient decentralised 

renewable energy infrastructure to meet global sustainability goals. 

 

Keywords:  Hybrid Renewable Energy System, Solar-Wind Optimisation, Neural Network Forecasting, Particle Swarm Optimisation,  

                   Intelligent Energy Management. 

1. Introduction 

The increasing global demand for energy, coupled with pressing environmental concerns, has accelerated the transition to sustainable 

energy systems. Renewable sources like solar and wind are at the forefront of this shift, offering a path to reduce greenhouse gas 

emissions. However, their inherent variability and intermittency create significant barriers to integration within existing energy 

infrastructures. Overcoming these challenges requires advanced algorithms and models to improve the performance and resilience of 

renewable energy systems [1]. Optimisation is crucial for scheduling and allocating energy resources to minimise costs, maximise 

performance, and reduce emissions. Traditional optimisation methods, however, struggle with the complex dynamics and uncertainties of 

modern energy systems dominated by renewables. This has driven the adoption of advanced computational techniques, including 

machine learning and AI algorithms, which can process large-scale data, enable real-time decision support, and enhance the flexibility of 

energy systems [2]. 

Hybrid Renewable Energy Systems (HRES), which combine multiple renewable sources, have emerged as a promising solution. The 

performance of these systems can be significantly enhanced through smart algorithms and efficient resource management. For instance, 
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real-time optimisation informed by advanced analytics has been shown to improve the cost-effectiveness and generation capacity of 

hybrid solar-wind systems, while similar intelligent controls have boosted energy efficiency in building management [3]. Effective 

optimisation relies on sophisticated modelling, which provides a virtual environment to simulate, analyse, and iterate on system designs 

and operational strategies [4]. Modern modelling methods have expanded the scope of energy optimisation by integrating complex 

variables such as weather patterns, energy demand, and infrastructure constraints. However, developing scalable and practical solutions 

for large-scale implementation remains a critical goal [5]. This study addresses this need by presenting a comprehensive framework that 

synergises advanced algorithms and system-wide modelling to optimise HRES, aiming to deliver tangible improvements in energy 

efficiency, reliability, and cost-effectiveness. 

2. Literature Review 

The optimisation of sustainable energy systems is an area of growing research interest, focusing on enhancing efficiency, reliability, and 

the integration of renewable resources. Advanced algorithms and modelling methodologies are recognised as key to addressing the 

challenges posed by the intermittent nature of renewable energy generation [6]. 

2.1. Machine Learning for Energy Optimisation 

Machine learning (ML) has emerged as a transformative technology for energy system optimisation. ML algorithms excel at analysing 

vast datasets of energy production and consumption to enable more effective energy management. For example, reinforcement learning-

based solutions have been successfully used to improve energy consumption efficiency in smart spaces. Data-driven systems powered by 

ML have proven to be more efficient at optimisation, facilitating intelligent decisions regarding energy distribution and consumption [7]. 

The application of ML in this domain often involves supervised learning techniques, such as regression for forecasting energy demand 

and generation, or classification for identifying operational states and predicting faults. By training on historical data, these models can 

uncover complex, non-linear relationships that traditional statistical methods might miss. This leads to more accurate predictions and a 

deeper understanding of system dynamics, which are essential for proactive rather than reactive energy management. The ability to 

process high-dimensional data from various sources simultaneously allows for a holistic view of the energy ecosystem. Furthermore, 

reinforcement learning (RL) offers a particularly powerful paradigm for dynamic control. In an RL framework, an "agent" (the energy 

management system) learns to make optimal decisions by interacting with its "environment" (the physical energy system and grid) to 

maximise a cumulative "reward" (e.g., minimised cost or maximised renewable usage). This approach enables the development of 

adaptive control strategies that can adjust to unforeseen conditions and optimise for long-term performance, moving beyond the 

limitations of rule-based systems and making intelligent, autonomous operation a reality [7]. 

2.2. Optimisation of Hybrid Renewable Energy Systems 

Hybrid Renewable Energy Systems (HRES), which combine sources like solar, wind, and biogas, have been optimised using various 

advanced algorithms. Metaheuristic approaches, such as the Pelican Optimisation Algorithm (POA), have been instrumental in the 

optimal sizing of these systems, ensuring continuous operation and high performance. Additionally, bilevel optimisation has been applied 

to HRES design to simultaneously address objectives like energy efficiency, environmental impact, and economic feasibility [8]. 

Metaheuristic algorithms are particularly well-suited for the complex problem of HRES design, which involves a large search space of 

possible component combinations and sizes. These population-based methods, inspired by natural phenomena, can efficiently explore 

this space to find near-optimal solutions without getting trapped in local optima. By iteratively refining a set of candidate solutions, they 

can balance trade-offs between capital costs, operational efficiency, and system reliability to identify robust configurations that meet 

specific performance criteria. Bilevel optimisation provides a hierarchical framework for tackling problems with multiple, often 

conflicting, objectives and decision-makers. In the context of HRES design, the upper level might focus on minimising the lifecycle cost 

of the system, while the lower level optimises the real-time operational dispatch to maximise efficiency or minimise emissions. This 

structure is effective for modelling the intricate interplay between long-term planning decisions and short-term operational control, 

leading to designs that are not only economically sound but also technically robust and environmentally sustainable [8]. 

2.3. Distributed Optimization and Advanced Modeling 

To manage the complexities arising from high renewable penetration in energy grids, distributed optimisation techniques have been 

investigated. Methods like the Alternating Direction Method of Multipliers (ADMM) and Augmented Lagrangian Alternating Direction 

Inexact Newton (ALADIN) have been used to solve power flow challenges in distributed environments, thereby improving the 

scalability and elasticity of energy systems [9]. Modelling is also critical for understanding and optimising energy systems, with 

techniques like model-adaptive clustering and simulation platforms being used to manage uncertainty and develop optimal policies [10]. 

The need for distributed optimisation arises from the increasing decentralisation of energy resources. As countless solar panels, batteries, 

and electric vehicles connect to the grid, centralised control becomes computationally infeasible and creates a single point of failure. 

Distributed methods overcome this by breaking a large-scale optimisation problem into smaller, interconnected subproblems that can be 

solved locally by individual agents. These agents then coordinate to reach a globally optimal solution, resulting in a system that is more 

scalable, resilient, and respectful of data privacy [9]. High-fidelity modelling and simulation are the bedrock upon which these 

optimisation strategies are built and validated. Simulation platforms allow researchers and engineers to test control algorithms across a 

wide range of "what-if" scenarios—from extreme weather events to grid faults—without jeopardising physical infrastructure. Techniques 

such as model-adaptive clustering help manage the inherent uncertainty in renewable generation by grouping similar operational 

conditions, making the optimisation problem more computationally tractable. This synergy between advanced modelling and 

optimisation is essential for de-risking new technologies and developing robust control strategies for future energy systems [10]. 

2.4. The Role of IoT and Real-Time Control 

The convergence of Internet of Things (IoT) sensor systems with modern communication technologies has further advanced power 

optimisation. These technologies enable real-time monitoring and control, which are foundational for implementing intelligent energy 

management strategies and promoting the development of sustainable smart environments [11][12][13][14]. The proliferation of low-cost 
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IoT sensors allows for the collection of high-resolution data from every part of the energy system. Sensors can measure solar irradiance, 

wind speed, ambient temperature, battery state-of-charge, and real-time energy consumption at a granular level. This stream of data 

provides the essential inputs for the machine learning models and optimisation algorithms discussed previously. Without accurate, real-

time data, any attempt at intelligent control would be based on stale or incomplete information, severely limiting its effectiveness. This 

sensor data is transmitted via robust communication networks to local controllers or cloud-based platforms, enabling a closed-loop 

control system. The energy management system can thus react dynamically to changing conditions, such as a sudden drop in solar 

generation or a spike in demand, by adjusting battery dispatch or curtailing non-essential loads. This capability for real-time monitoring 

and automated control is what transforms a static collection of renewable assets into an intelligent, responsive, and truly smart energy 

ecosystem [11][12][13][14]. In summary, the literature indicates a clear trend toward leveraging the synergy between advanced 

algorithms, machine learning, distributed optimisation, and sophisticated modelling to enhance sustainable energy systems. These 

advancements are paving the way for more efficient, reliable, and resilient energy infrastructures that can support the global transition to 

renewable sources. 

3. Methods  

This study employs a comprehensive methodological framework to design, simulate, and validate an optimised hybrid sustainable energy 

system. The approach integrates meteorological data analysis, advanced algorithmic optimisation, dynamic system simulation, and 

experimental validation to create a robust and replicable model. The methodology is executed in four primary stages: data collection, 

algorithmic design, system simulation, and experimental validation. 

3.1. Meteorological and System Data Collection 
To ground the study in realistic environmental conditions, meteorological data were collected from three distinct climatological zones in 

Iraq: Al Anbar (Site A), Basrah (Site B), and Erbil (Site C). Each location represents a unique climatological zone with implications for 

system design. 

 

Table 1. Meteorological Data for Renewable Energy Sites 

Location Solar Irradiance (kWh/m²/day) Average Wind Speed (m/s) Temperature Range (°C) 

Site A – Al Anbar 5.2 4.8 18–30 

Site B – Basrah 4.5 3.5 15–28 

Site C – Erbil 5.8 6.2 20–33 

 

These measurements formed the boundary conditions for hybrid energy simulations involving solar photovoltaic and wind turbine 

generation systems [1][4]. 

3.2. Optimisation Algorithms Design 

Three advanced computational algorithms were designed and implemented to optimise different facets of the energy system: a Neural 

Network (NN) for predictive forecasting, a Genetic Algorithm (GA) for system sizing, and Particle Swarm Optimisation (PSO) for real-

time dispatch. 
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Table 2. Algorithm Implementation Parameters 

Algorithm Population/Swarm Size Max Iterations Training Ratio Learning Rate 

Genetic Algorithm 100 200 N/A N/A 

Particle Swarm Opt. 50 200 N/A N/A 

Neural Network (MLP) N/A 500 epochs 70% 0.01 

These algorithms were configured and executed using MATLAB and Python-based environments [2][15][16][17]. 

 

3.4. Experimental Setup Configuration 
To validate the simulation framework and the performance of the optimisation algorithms, a physical hardware testbed was constructed. 

The experimental setup mirrored the simulated hybrid system. 
Table 3. Specifications of the Experimental System Components 

Component Specification 

Solar PV Panels 300W/panel × 20 panels 

Wind Turbine 2.5 kW, Horizontal Axis 

Battery Storage 15 kWh, Lithium-Ion 

Inverter Efficiency 94% 

 

Real-time operational parameters from the testbed were logged and streamed to a cloud-based analytics platform. This created a closed 

feedback loop, allowing for continuous data collection for model training and direct comparison between simulated and measured results 

[6][11][18]. 

3.5. Algorithmic Framework for Optimisation 
To achieve operational excellence, this study employs a multi-layered algorithmic framework designed to optimise the hybrid energy 

system across different timescales. Three distinct computational methods were selected for their proven effectiveness in solving specific 

energy management challenges: a Genetic Algorithm (GA) for strategic resource allocation, Particle Swarm Optimisation (PSO) for 

tactical dispatch control, and a feedforward Neural Network (NN) for predictive demand forecasting. The integration of these algorithms 

enables a multidimensional optimisation strategy that enhances energy security, reduces operational costs, and increases overall system 

reliability. 

3.5.1 Genetic Algorithm for Strategic Sizing 

For long-term planning and system design, a Genetic Algorithm (GA) was implemented to solve the complex optimisation problem of 

component sizing and resource allocation. The GA is particularly effective for this task due to its ability to explore a vast and complex 

solution space without being constrained by local optima. By simulating the principles of natural selection—including selection, 

crossover, and mutation—the algorithm iteratively evolves a population of potential solutions to identify the optimal generation and 

storage architecture that minimises lifecycle costs while satisfying energy balance constraints. This process, detailed in the flowchart in 

Figure 1, makes the GA an ideal tool for high-level, multi-objective energy planning [12][19][20][21][22]. 

 

Fig 1. Genetic algorithm flowchart for load allocation and sizing 
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3.5.2 Particle Swarm Optimisation for Real-Time Dispatch 

For tactical, moment-to-moment operational control, Particle Swarm Optimisation (PSO) was utilised as the primary engine for real-time 

energy dispatch and storage management. Governed by principles of swarm intelligence, the PSO algorithm's population-based search 

mechanism offers rapid convergence and high adaptability to dynamic environmental inputs. Compared to the GA, PSO demonstrated 

superior computational efficiency during simulation trials, making it the preferred choice for integration into the experimental platform's 

control logic. The operational flow of the PSO algorithm—from particle initialisation to the iterative updating of velocity and position—

is depicted in Figure 2 and reflects current best practices in the optimisation of hybrid energy systems [23]. 

 

Fig 2. Particle Swarm Optimisation structure for storage and dispatch optimisation 

3.5.3 Neural Network for Demand Forecasting 

Accurate demand forecasting is critical for proactive energy management. To this end, a feedforward Neural Network (NN) was 

developed to predict short-term load profiles. The model was structured as a Multilayer Perceptron (MLP) with two hidden layers and 

sigmoid activation functions, a configuration well-suited for capturing complex temporal patterns in energy consumption data [2][24]. 

The NN was trained using both historical demand data and meteorological inputs to anticipate load changes and inform downstream 

generation and storage decisions. As illustrated in the corresponding flowchart (Figure 3), the MLP architecture processes inputs through 

successive neuron layers to produce an accurate demand forecast. Each algorithm was implemented within a modular simulation 

framework, which allowed for their performance to be compared and hybridised. This architecture enabled a comprehensive assessment 

based not only on statistical accuracy metrics (MAPE, RMSE, R²) but also on real-world operational criteria, including energy 

curtailment, cost savings, and system resilience. The synergy between the predictive NN and the responsive PSO models proved 

particularly effective for real-time adaptive control, highlighting their value as intelligent tools for managing hybrid renewable systems. 

 

 

Fig 3. Neural network architecture for short-term load forecasting 
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4. Result and Discussion 

The article provides an in-depth evaluation of the hybrid solar-wind energy system following the improved methodological design. It 

covers site-specific energy production, system efficiency and cost metrics, algorithmic performance comparisons, field validation results, 

and system reliability analysis. The following findings are derived from simulated outputs, experimental data collected from the Erbil 

testbed, and algorithmic benchmarking under identical environmental and operational conditions. This multi-dimensional analysis 

confirms the technological, economic, and environmental benefits of deploying hybrid systems optimised using advanced modelling and 

intelligent control strategies. 

4.1. Energy Production and Resource Utilisation 

Electricity generation capacity in three separated locations in Iraq (Site A: Al Anbar, Site B: Basrah and Site C: Erbil) was assessed, 

where each location represented a different climatic zone. Meteorological data – Solar and wind irradiance were retrieved and treated to 

estimate hourly generation of renewable energy (photovoltaic modules and wind turbines). It was assessed the ability of the hybrid 

system to consolidate and buffer the renewable sources with storage and with dispatch control. The two hybrids generated power output 

from system A and system B were also compared with the power outputs of two stand-alone systems of solar and wind to evaluate the 

hybridisation performance at each location. 

 

Fig 4. Total annual energy production by region and system type 

The hybrid system performed better than the use of any single renewable source in all the sites tested. For Al Anbar, the system yielded 

12,860 kWh in combined production , approximately 30% greater than the best-performing stand-alone system. Basrah, where average 

wind speeds are lower, still exhibited a 31% gain from the hybridisation, indicating the solar generation compensatory advantage. Erbil 

was the city that achieved the best overall production with 14,025 kWh, a 32% increase due to its abundant solar radiation and wind 

speed. These findings demonstrate that hybrid systems can exploit environmental complementarities to achieve the highest energy yields 

in region-specific scenarios. 

4.2. System Efficiency and Economic Performance 
The efficiency of the system and operation cost were investigated to assess the viability of the large-scale application of the hybrid 

model. Efficiency is the energy output over input resources, and cost per kilowatt-hour is determined based on lifecycle maintenance, 

storage degradation and energy loss. Environmental impact was measured as CO2 reductions due to the displacement of fossil fuel 

electricity. A detailed comparison had been made with other individual systems under the same demand scenarios and installed 

capacities to provide an evaluation of operational benefits, as well as performance comparisons. 

 

Fig 5. Efficiency, cost, and co₂ reduction by system type 
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The hybrid option was found to use the most energy efficient (92.3%), which was 16.5% higher than the best option for standalone. 

Operational expenses were reduced almost by half for CSP ($0.075 per kWh) in contrast to solar and wind-only solutions ($0.118 and 

$0.134 per kWh, respectively). This corresponds to a lesser curtailment, a better storage pumping-turbine efficiency and the reduction of 

the unmet load penalties. In addition, the hybrid system achieved a 19.8% decrease in CO₂ emissions originating from increased 

renewable penetration as well as a decreased need for fossil backup power. These results prove the optimised hybrid solution to be not 

only technically better, but also more economically and environmentally profitable. 

4.3. Optimisation Algorithm Performance 
Three computational models, the Genetic Algorithm (GA), the Particle Swarm Optimisation (PSO) and a feedforward Neural Network 

(NN), were compared in terms of input load, environmental uniformity and synchronised training data. Convergence time was used to 

demonstrate computational efficiency, while solution quality and statistical metrics (MAPE, RMSE and R²) were used to evaluate 

forecasting and dispatch accuracy. The comparison indicates the algorithm’s readiness for implementation in hybrid energy system 

supervisory and long-term energy-planning tools. 
Table 4. Algorithm Accuracy and Runtime Metrics 

Algorithm Convergence Time (s) Solution Quality (%) MAPE (%) RMSE (kWh) R² 

Genetic Algorithm 115 91.5 4.2 1.45 0.93 

Particle Swarm Opt. 81 93.2 3.6 1.29 0.96 

Neural Network (MLP) 160 97.8 2.9 1.18 0.98 

 

The highest performance was obtained by the neural network (solution quality = 97.8%; MAPE = 2.9%; R² = 0.98). Despite its high 

energy demand forecasting accuracy, it requires a longer convergence time of 160 seconds. PSO struck a good trade-off between speed 

and accuracy; its running time is as short as 81s, and the quality of the intermediate result is up to 93.2%. GA was slightly inferior in all 

the measures of performance. These findings indicate that, even though NN has a higher predictive accuracy than PSO, PSO is more 

suitable for real-time, embedded control services. 

4.4. Validation of Simulation Accuracy 
Simulation results were verified with real measurements obtained from the Site C (Erbil) hybrid system. Information comprised overall 

energy production, efficiency of the system, and the amount of CO₂ saved in four weeks. This verification determines if the simulation 

framework, algorithms, and input assumptions accurately duplicate reality or not. The calibration sensor of the testbed was integrated 

and synchronised with real-time weather feeds in order to verify the input data. The simulation was executed using the same parameters 

and time intervals for direct one-to-one comparison. 

 

Fig 6. Field validation: simulated vs. measured results (site C – Erbil) 

The simulation closely replicated actual field performance, with minimal deviation. Energy output differed by only 0.32%, while 

efficiency and CO₂ reduction values were within 0.76% and 0.30%, respectively. This validates the robustness of the simulation model in 

predicting system behaviour under varying resource and load conditions. The negligible errors confirm the effectiveness of the neural 

network-based demand forecasting and PSO-driven dispatch algorithms integrated into the simulation. These results demonstrate that the 

improved methodology can serve as a reliable platform for decision-making, performance forecasting, and design optimisation of hybrid 

energy installations. 

4.5. System Reliability and Availability Assessment 

In addition to energy-based metrics, operational dependability is a key criterion for assessing the robustness of hybrid systems, 

particularly for off-grid or mission-critical applications. The system reliability due to optimisation was investigated by MTBF, MTTR 

and the overall system availability. These constants were obtained from 12 months of logs from the Erbil testbed and simulation-based 

failure injection scenarios. Improvements were achieved through the incorporation of fault-tolerant control logic, advanced load 

scheduling technologies and intelligent pattern recognition techniques into the algorithmic framework. 
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Fig 7. Reliability metrics before and after optimisation 

The result of the optimisation was an increased robustness, with the mean time between failure (MTBF) growing from 300 to 520 hours, 

and the mean time to repair (MTTR) dropping by 55%, indicating the possibility of predicting and handling faults with intelligent 

control algorithms. Enhanced system availability from 93.2% to 97.6% provided less downtime, as energy was delivered in a more 

controlled manner. These improvements are essential in remote or unconcealed installations where system self-recovery, uptime and 

reliability can affect energy security. The results prove that production optimisation approaches not only reduce cost and enhance 

efficiency, but also  enhance the reliability of the system under real operating conditions of diverse renewable energy sources. 

4.6. Discussion 

The findings of this study validate the effectiveness of the proposed hybrid solar-wind energy system, which was optimised using a 

sophisticated algorithmic framework and verified through extensive simulation and field experimentation. This section discusses the 

implications of these results, contextualises them within the existing literature, acknowledges the study's limitations, and suggests 

directions for future research. 

4.6.1 System Performance and Economic Viability 

The results demonstrate significant performance gains achieved through hybridisation and intelligent control. The high energy production 

levels, particularly in Erbil (over 14,000 kWh), confirm that combining complementary renewable sources under a smart management 

system can yield substantial output, with increases of 30-32% compared to standalone systems. These findings align with the broader 

literature emphasising the need to integrate renewables to mitigate intermittency and enhance energy yield. Specifically, this work builds 

upon the research of Abdullah et al by not only using machine learning for sizing and cost optimisation but also by integrating neural 

networks and PSO for predictive control, leading to superior energy production and economic benefits [3]. From an economic standpoint, 

the hybrid system achieved an energy conversion rate of 92.3% and delivered electricity at a significantly lower cost ($0.075/kWh) 

compared to standalone solar ($0.118/kWh) and wind ($0.134/kWh) options. This cost reduction is consistent with recent findings by 

Konneh et al, who demonstrated that advanced computational approaches can lower the cost of complex multi-source systems through 

improved dispatch and storage coordination [6]. Furthermore, the nearly 20% reduction in CO₂ emissions supports the environmental 

sustainability objectives highlighted in recent bibliometric analyses of renewable integration studies [4]. 

4.6.2 Algorithmic Performance and Model Validation 

The comparative analysis of the algorithms revealed that the neural network model provided the highest predictive accuracy 

(MAPE=2.9%, R²=0.98), confirming its suitability for energy demand forecasting. However, the PSO algorithm offered the best balance 

of computational speed and accuracy, making it ideal for real-time control applications. This observation is supported by Houssein et al, 

who noted the versatility of PSO in energy management [24]. The successful blend of predictive modelling (NN) and metaheuristic 

optimisation (PSO) in this study directly answers the call from Forootan et al for combining machine learning with evolutionary 

computing to achieve greater energy intelligence [2]. The high fidelity of the simulation framework was confirmed through field 

validation at the Erbil testbed. With error margins below 1% for key metrics like energy output and efficiency, the simulation results 

proved to be highly representative of real-world performance. This successful validation was attributable to precise meteorological 

modelling and iterative, algorithm-based control. These results echo the validation-centric work of researchers like Clément and Ipek, 

who have also emphasised the importance of corroborating simulation credibility with experimental measurements to de-risk energy 

system development [25][26][27]. 

4.6.3 System Reliability and Resilience 

Beyond performance metrics, this study addressed the critical factor of system reliability. The implementation of the optimisation 

framework led to a significant increase in resilience, with the Mean Time Between Failures (MTBF) improving by over 70% and overall 

system availability reaching 97.6%. These enhancements are a direct result of integrating predictive maintenance logic and intelligent 
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control algorithms into the system model, aligning with the work of Sonawane et al, who highlighted the importance of robust 

operational planning and fault analysis in enhancing the reliability of large-scale solar projects [28].  

4.6.4. Limitations and Future Research Directions 

Despite the positive outcomes, this study has several limitations. First, the analysis did not explicitly account for extreme seasonal 

variations or sudden demand surges, which could impact the generalizability of the findings in regions with highly variable climates, a 

limitation also noted by Rahman et al in their work on hybrid microgrids [8]. While the neural network model was highly accurate, its 

training time may pose a challenge for real-time applications in resource-constrained environments, a constraint also observed by 

Recalde et al in the context of electric vehicles [7]. A second limitation is the assumption of uniform component degradation. The 

efficiency of batteries and inverters declines over time, and future models should incorporate real-time wear modelling, as suggested by 

Ogunmodede et al, to improve lifecycle analysis [5]. Finally, the economic model did not include complex financial factors such as 

inflation or dynamic tariffs. As highlighted by Alturki and Awwad, more sophisticated financial instruments are needed for more 

representative LCOE calculations [3]. Future work should address these issues by incorporating seasonal demand forecasting, adaptive 

control based on hardware lifecycle, and more detailed financial analysis. Further research could also explore integrating IoT and edge 

computing for decentralised control [29] or expanding the model to include multi-objective optimisation frameworks that balance 

economic, environmental, and efficiency trade-offs [23][30]. In conclusion, this research provides a technically robust and empirically 

validated pathway for optimising hybrid solar-wind energy systems. It contributes to the literature on smart renewable energy integration 

by successfully blending precise prediction, high-fidelity simulation, and real-world validation, offering a replicable foundation for 

designing the next generation of resilient and intelligent energy infrastructure. 

5. Conclusion  

This study successfully developed and validated a comprehensive framework for designing and optimising hybrid solar-wind energy 

systems. By integrating advanced simulation with intelligent algorithms—specifically machine learning for forecasting and swarm 

optimisation for dispatch—we demonstrated significant enhancements in energy delivery, cost-effectiveness, and operational reliability. 

The research provides a practical, validated approach that bridges the gap between theoretical modelling and the real-world 

implementation of decentralised renewable energy systems. The proposed framework effectively addressed key technical challenges, 

including resource intermittency and load balancing, with control strategies that were validated against field data, confirming the model's 

high fidelity. The integration of predictive analytics and fault-tolerant controls resulted in a notable increase in system resilience and 

availability. The results confirm that integrating algorithmic control into the early design stages is critical for optimising the technical, 

economic, and environmental performance of next-generation sustainable energy infrastructures. Future research should focus on 

expanding this framework by incorporating real-time edge computing and IoT sensors for greater autonomy. Further work could also 

involve extending the model to include other renewable sources and storage technologies, developing adaptive degradation models for 

key components to improve lifecycle forecasting, and applying multi-objective optimisation to address more complex deployment 

scenarios. 
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