

Performance of PTFE-Based Adaptive Building Facades for Climate Resilience: A Simulation-Driven Analysis

Antima Kuda^{1*}, Madhura Yadav¹, Syed Moazzam Ali²

¹Faculty of Design, Manipal University, India

²MEP, TEC Engineering Services LLC, Hyderabad, India

*Corresponding author E-mail: aashii.kuda@gmail.com

The manuscript was received on 10 February 2025, revised on 20 May 2025, and accepted on 2 July 2025, date of publication 16 July 2025

Abstract

As an aesthetic architectural thermal barrier, the building envelope is considered vital and contributes substantially to improving the overall building performance. Responsive Facades bring in a revolutionary transformation to the static building skins by changing them into an adaptive façade that responds to the external climatic conditions like solar heat gain, light and temperature variations. The key objective of the paper is to evaluate the potential of PTFE (Polytetrafluoroethylene) in enhancing the building energy efficiency and thermal comfort index of the users in comparison to a static, Energy Conservation Building Code (ECBC) compliant base case test model, under identical environmental conditions. Evaluation is based on the simulation analysis conducted on the high-rise office building in Jaipur, India, a region characterised by a composite climate with hot summers and cold winters. The complete assessment is derived by using DesignBuilder V7.0 with the EnergyPlus engine. This research focuses on the performance of PTFE as a climate-responsive material when used in adaptive building envelopes. Performance metrics include annual heating, ventilation, and air conditioning HVAC energy consumption (kWh/m²), thermal discomfort hours, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfied (PPD). Results demonstrate that the ECBC-compliant static facade recorded an annual HVAC energy use of 96 kWh/m², 1,588 discomfort hours, a PPD of 25.3%, and PMV of +0.82. In comparison, the PTFE kinetic facade achieved an energy use reduction of 95 kWh/m² (1.3% lower), reduced discomfort hours to 1,532 and improved thermal comfort with a PPD of 24.1% and PMV of +0.76. These findings have highlighted the uniqueness of Responsive facades while analysing their capability in enhancing the thermal comfort index and lowering energy consumption, supporting sustainable and climate-responsive building design.

Keywords: Adaptive Building Facades, Building Energy Simulation, Climate Responsive Facades, Energy Efficiency, Thermal Comfort Index

1. Introduction

The high-rise commercial buildings are significant contributors to global energy consumption and carbon emissions, largely due to excessive solar heat gain through their facades [2–4]. The buildings often consume more than 50% of their electricity annually for space cooling and heating [7][1], which complicates the environmental adverse effects of climate change and urban development. Considering these challenges, there is a necessary requirement to integrate the building design with climate resilient and high energy efficient innovations. Conventional fixed facades have been proven to inadequately manage the shifting and unstable environmental conditions. As a result, architects and engineers are increasingly stressing on the use of adaptive building envelopes. Such façade systems are capable to react in real time to the external climatic stimuli that involves solar radiation, temperature fluctuation and changing daylight availability[1][2]. Additionally improving the thermal efficiency, these innovative adaptive facades drastically reduce the demand for dynamic HVAC systems, which minimizes the energy consumption. A fluoropolymer, PTFE known for its exceptional properties in terms of thermal stability, chemical resistance, and lightweight properties, is being explored widely as a unique material for dynamic building facades. The transparency, flexibility and resistance to the challenging weather conditions, makes this material optimal for the use in the responsive building envelopes, contributing to both occupant thermal comfort and energy efficiency of the building[4][5]. The increasing energy demands and environmental degradation have necessitated the standards and building codes in India, to focus on the energy efficient building design. The Bureau of Energy Efficiency (BEE) under the Ministry of Power in 2007, launched the Energy Conservation Building Code (ECBC)[3][4][5], which defines minimum energy performance guidelines for commercial buildings with a prime focus on the components of the building encompassing building envelopes, lighting and HVAC systems. Simultaneously additional technical direction is given by the international standards, like American Society of Heating, Refrigerating and Airconditioning Engineers (ASHRAE 55) for thermal comfort and ASHRAE 90.1 for energy performance, ensuring the buildings are both energy efficient and occupant friendly. To encourage data-driven design, ECBC recommends the inclusion of the BPS (Building Performance Simulation) tools, such as DesignBuilder V7.0, powered by the EnergyPlus engine [9]. These tools enable architects and engineers to analyse the impact of

Copyright © Authors. This is an open access article distributed under the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

different design approaches and the application of materials on a building's energy consumption and thermal comfort, which helps in deciding on solutions for sustainable and efficient facade systems [10][11][12]. As defined by these standards and guidelines, a simulation test is conducted on a high rise office building in Jaipur, India reflecting a composite climate with hot summers and cold winters was considered as a base case with a conventional static façade. Subsequently, the same model was modified to include PTFE as an adaptive facade, assumed to dynamically react to environmental conditions by changing its parameters, such as thermal resistance and, solar transmittance. This allowed for a comparative assessment of annual energy consumption, discomfort hours, PMV and, PPD, under similar environmental and occupancy conditions. This study aims to quantify and demonstrate the valuable contribution of PTFE, a climate responsive material using simulation modelling methods [13][14][15][16][17]. The scientific analyses intend in advancing adaptive facade systems towards climate resilient and energy efficient urbanization. A holistic literature review on PTFE as a novel material for adaptive facades, is discussed in the following sections, while assessing its thermal, mechanical, environmental performance properties and its applicability in climate-responsive building envelopes. The simulation test, including building model development, integration of weather-related data and specification parameters for design as per the ECBC and ASHRAE standards, are subsequently explained. With the objective to evaluate and compare the base case (static facade) and the adaptive PTFE facade under the same operational conditions, the research employs mandatory performance metrics like annual energy consumption, thermal discomfort hours, PMV (Predicted Mean Vote), and PPD (Predicted Percentage of Dissatisfied). Findings of this comparative analysis provide considerable insight into the potential of PTFE-based adaptive facades to improve occupant thermal comfort, and building energy efficiency, in high-rise commercial buildings located in composite climates. The paper, finally concludes with an assessment of the results expanded implications discusses the broader implications for sustainable facade design, illustrating the integral role of adaptive building envelopes fostering the development of energy-efficient and climate-resilient building design [18][19].

2. Literature Review

With the increase in climate-adaptive architecture for the development of sustainable cities, the role of building envelopes has shifted from passive barriers to intelligent and interactive structures capable of improving the energy efficiency of the building and occupant thermal comfort index. In this aspect, PTFE has gained a remarkable recognition for its exceptional durability, flexibility, resistance to UV, and thermal resilience. These attributes have encouraged PTFE, as one amongst the widely accepted responsive material for adaptive facade systems in buildings. The application of PTFE in adaptive building envelopes, that respond to environmental stimuli as solar radiation and changes in temperature, remain relatively unexplored in scholarly and scientific research. The need to lower operational carbon in high-rise buildings, especially in locations with highly variable climate, PTFE provides unique advantages in delivering the advance performance, and relatively low-maintenance solutions. This literature review critically focuses on the current state of research on PTFE in this sector. The data emphasize key performance attributes, existing issues, and its scope to sustainable urban design.

2.1. Introduction to PTFE in Architectural Applications

PTFE was coincidentally discovered on April 6, 1938, by Dr. Roy J. Plunkett during performing experimental research involving Freon-related gases at DuPont's Jackson Laboratory. A white, waxy solid with a unique set of physicochemical properties, including high thermal stability [20], chemical inertness [21][22], low surface energy, non-flammability, non-toxicity, and a remarkably low coefficient of friction[23][24] was developed the unforeseen polymeric reaction of a gaseous tetrafluoroethylene specimen. The material exhibits exceptional performance across a broad operational temperature range, with a high degree of crystallinity (90–95%) and a melting point of approximately 327°C, making it an unique material among high-performance fluoropolymers [25][26]. It is mostly utilised in construction application as a coating on fiberglass membranes, setting up in a composite material that is mechanically strong and visually transparent. Furthermore, with the dual functionality of structural efficiency and aesthetic adaptability, these membranes are also being increasingly utilized in lightweight tensile structures and advanced façade systems [27][28]. Being light weighted the material's capacity to transmit diffused natural daylight while reducing glare, enhances visual comfort within built environments is also quite significant. This parameter adds to overall energy usage reduction by enhancing occupant well-being but lowering resort on the artificial lighting systems. In addition to this, PTFE membranes also offer more efficient operation of HVAC systems by minimizing solar heat gain and lowering internal heat loads. In align with the current objectives in sustainable building design, PTFE based constructional options offer a comprehensive integration of environmental performance, energy efficiency, and future material resilience.

2.2. PTFE in Building Envelopes and kinetic façade systems

A highly efficient fluoropolymer, PTFE has become a known material in construction industry, due to its exceptional durability, weather resistance, and mechanical stability. This material plays a pivotal role in both traditional and modern building envelope systems as construction thinking progresses towards environmental adaptability, and sustainability.

The application of PTFE in tensile architecture, particularly for roofs and atriums in large-scale infrastructure like stadiums, airports, and transport hubs [29]. Due to its high resistance to UV radiation, moisture, and temperature extremes, this material is highly durable over long operational lifespans[30]. Additionally, it is ideal for sustainable and low-maintenance envelopes [31][32][33] because of its non-flammable, self-cleaning, and mechanical properties. By implementing PTFE into layered and composite façade systems, recent advances in materials science have further strengthened its value. These advancements promote the development of energy-efficient building envelopes by improving thermal insulation performance and adaptability in climate-responsive architectural designs. Different fabric densities and coatings, can be used to design PTFE membranes, that may impact their light transmittance (typically 6–14%) and insulation performance with reported U-values ranging from 1.6 to 3.5 W/m²K, depending on construction [34][35]. The building engineering incorporates adaptive design is industry increasingly embraces responsive architecture concepts and techniques, PTFE has emerged as the preferable material with unique properties responsive adaptive façade systems. To maximize occupant thermal comfort and minimize the energy consumption, these systems are configured to adjust dynamically to altering changing environmental conditions. Its flexibility, and lightweight nature make it applicable for installation into active facade elements like folding panels, retractable shading devices, and shape-shifting envelope structures. These systems frequently include pneumatic, hydraulic or motorized actuators, allow real-time modulation of solar gain, glare, ventilation, and daylight [36] [37][38][39][40].

2.3. Challenges and Opportunities

Inspite of its benefits, there are few constraints limiting PTFE from being used extensively. wider adoption is limited by certain constraints. Technical installation procedures, high initial expenses and minimal recyclable qualities provide challenges specifically when

used in adaptive assemblies. The structural support required for PTFE membranes also demands careful engineering, especially when used in kinetic assemblies that are subjected to movement and environmental loads. However, breakthroughs in adaptive façade systems and material science continue making this novel material in this responsive faced system more attainable. The inclusion of smart sensors, real-time environmental feedback loops, and automated control systems with this material, places it at the core of responsive architecture for the future generation. Although PTFE is widely acknowledged in material science industry for its persistent durability, longevity, and low maintenance, there are several research gaps which limit its extended utilization in intelligent façade systems. Widespread adoption in advanced façade systems. There is an inadequate research studies on the complete long term evaluation which includes detailed data on energy consumption, and options for disposal and recycling of the material. PTFE material is chemically inactive and durable, but its non-biodegradable character prompts concerns regarding its effect on the environment. There is only limited tangible performance validation of energy simulation model using various simulation tools [41]. In addition, there is not enough substantial study on combining the PTFE membranes with innovative materials like PCM (Phase changing materials), nanostructured coatings, or photovoltaic layers [42][43]. Though PTFE has been implemented on responsive façade structure that is Leadership in Energy and Environmental Design LEED accredited, like Al Bahar, in Abu Dhabi, specific requirements and regulations for its application in adaptive systems are still unavailable. This complicates the further utilization of this intelligent material for large scale usage.

2.4. Conclusion of Literature Review

PTFE retains a lot of possibility to construct modern building envelopes, in particular for energy efficient and climate responsive structures. Based on its exceptional material traits, it can be used for adaptive façade skins. Future research prioritise on the quantitative analysis of its energy efficiency, thermal performance and the integration with other smart materials to enable to fully comprehend its function in sustainable and efficient construction design. Extensive environmental impact evaluation and performance-oriented norms concerning the use of PTFE in responsive adaptive facades are further needed.

3. Methods

DesignBuilder V7.0 with EnergyPlus is used for a simulation-based study to assess the impact of PTFE as a responsive facade material. ECBC-compliant static facade serving as the baseline, a high-rise office model in Jaipur, India, under a composite climate, with hot summers and cold winters is used for the whole building energy performance test. The following section outlines the simulation setup, key assumptions, and performance metrics used to compare total energy consumption and thermal comfort.

3.1. Tools and Simulation setup

An extensive simulation was conducted using whole-building energy modeling to evaluate each facade material under uniform conditions [44]. Building performance simulation is extensively utilised to optimise building envelopes and systems. Without the need of real prototypes, this technology provides the possibility to analyse how PTFE material as façade affects user thermal comfort and energy efficiency of the building [45][46]. Due to the improved abilities of DesignBuilder V7.0 (with an EnergyPlus engine) software is chosen for assessing the building energy performance [47][48]. Seasonal and diurnal shifts in yearly simulations ie January to December is documented using hourly timestep analysis. Aligned with best recommendations supported by ECBC and ASHRAE 90.1/55 standards, this tool is well-established for estimating annual energy consumption, thermal comfort indices, and daylighting [6][8]. Figure 1 shows office block, located in Jaipur, India, having a composite climate region with hot summers and cool winters is the baseline building model that is utilised for all simulations. Throughout each simulation run, the geometry and orientation of the model remains constant and same. Standard reference models [49] are implemented to establish the essential building parameters (floor area, number of floors, occupancy density, internal loads, etc.) and are then subsequently modified to adjust for the local climate [50]. The building envelope in the base case consisted of typical construction materials meeting ECBC 2017 with prescriptive requirements [6] for wall U-values = 0.630 W/m²K, Roof U-value = 0.330 W/m²K, Glass U-value = 3.00 W/m²K and solar heat gain coefficients, SHGC = 0.27, Equipment Power density (W/m²) = 16.14, Lighting Power density (W/m²) = 9.5 and Occupancy density (People/m²) = 0.05. In the base case, no shading devices is used, providing a clear performance benchmark under static facade conditions [51].

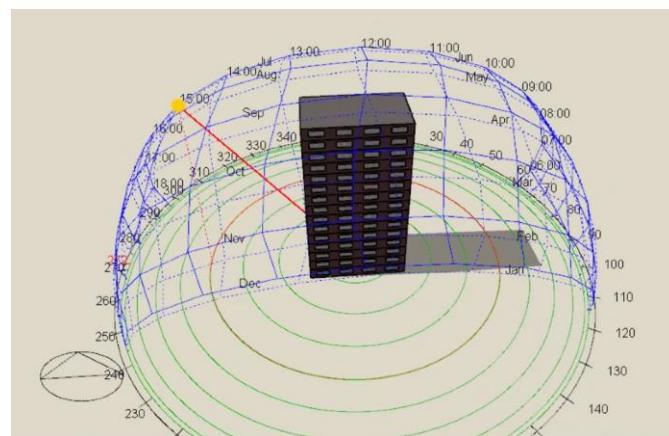


Fig 1. Building 3D view in DesignBuilder tool

Building details for making Building Simulation Model:

1. Area : 375m² (25m X 15m)
2. Floor to floor height : 3.0m
3. 15 Storey, office building having glazing on the south wall

An EnergyPlus compatible, Jaipur EPW file, that indicated the composite climate is used for weather data and information. To ensure comparability the identical weather data is used in overall simulations for the different facade scenario. In accordance with the building load, the HVAC system in the model is programmed as a conventional efficient system (e.g., variable air volume with economizer). In all cases, internal thermostat setpoints, occupancy, and lighting schedules are kept unchanged. This constant configuration distinguishes the facade material's performance as the essential variable.

3.2. Façade model

To establish a performance baseline, after running the base case simulation, introduction of responsive facade systems in one scenario runs:

PTFE facade: An adopted facade based on PTFE is applied on the external building's skin. The simulation is achieved by modifying the envelope abilities to replicate the PTFE façade. This material is highly transparent with relatively low thermal insulating value, its effective U-value can be much lower. The PTFE facade is assumed to adjust in response to external climatic factors. Effective U-value = 1.6 W/m²K, SHGC = 0.25 are taken as reference values for the simulation test based on its specific features.

In the above adaptive scenario, the simulation's control strategy for adaptive façade is simplified. The facade is set up to retract or become maximally transparent during cold periods. This on/off control delivers an accurate assessment of potential improvement and corresponds a responsive system.

3.3. Performance parameters

To thoroughly evaluate the facade option, several key performance metrics from the simulation results, are analysed:

Energy Use per year (building energy consumption, kWh/m²): It provides the total building energy consumption per unit floor area, mainly for HVAC (cooling and heating) and fans. Lower values indicate better energy efficiency of the building. It is annotated in watt-hours per square meter for the analysis period. The stress in this study is on the building energy consumption for HVAC, since facade changes mostly impact heating/cooling loads.

Discomfort Hours: The total number of hours in an entire year when the temperature inside falls beyond a specified comfort range. In this case the comfort range is determined by standard criteria such as the acceptable range of PMV/PPD per ASHRAE 55 [7][55][52][53]. Lesser discomfort hours depict the building maintains a comfortable environment for occupants most of the time, indicating an effective facade and HVAC design.

Fanger Predicted Percentage of Dissatisfied (PPD, %): This index predicts the percentage of users who will experience thermal discomfort in the indoor environment. It is derived from the Fanger comfort model and related to the PMV. A less PPD percentage indicates a higher fraction of thermally satisfied users. For instance, PPD = 25% means one in four people may be dissatisfied on average [52].

Fanger Predicted Mean Vote (PMV): The PMV is an indicator of the average thermal sensation on a scale from -3 (cold) to +3 (hot), with 0 being neutral. It takes several factors like air temperature, radiant temperature, humidity, air speed, metabolic rate, and clothing level. Values close to 0 (between -0.5 and +0.5) are mainly considered comfortable. In this research, a PMV slightly above 0 indicates a tendency toward warmth. Lower absolute PMV (closer to zero) signifies better thermal comfort.

The above-mentioned metrics were calculated for every simulation scenario to provide a detailed picture: energy performance (via annual kWh/m²) and occupant comfort (via discomfort hours, PPD, PMV) [52][53][54][55][56]. All other variables being equal, a facade that yields lower energy use and improved comfort indices is considered superior. In addition to this, we also note the percentage savings in energy use for the adaptive cases relative to the base case, to quantify improvement.

4. Result and Discussion

The performance of the adaptive facade material, PTFE is compared against the ECBC-compliant base case after running the simulations test. Table 1 and 2. depicts the key findings after the subsequent discussion.

4.1. Baseline reference performance

Significantly the ECBC Base Case, without any shading device, got the highest energy consumption and indoor discomfort values. Due to extensive solar gains and thermal losses through the static façade, the yearly energy consumption was high, resulting in greater HVAC demand of about 96 kWh/m². Correspondingly, the base building experienced 1588 discomfort hours over the year, indicating that for nearly 18% of the time in a year, indoor environment fell outside the comfort zone refer Table 1. The PPD was about 25.3%, meaning one in four occupants were predicted to be uncomfortable on average, and the PMV of +0.82 suggests the indoor environment tended to be uncomfortably warm for occupants (near the upper limit of the comfort range). Improvement is needed to increase the energy efficiency of the building and indoor thermal comfort, even though the baseline simulation scenario meets the minimum standards. Figure 2, Figure 3 and Figure 4 shows the monthly comfort graph, yearly bar chart for comfort and yearly bar chart for energy consumption respectively using ECBC base case.

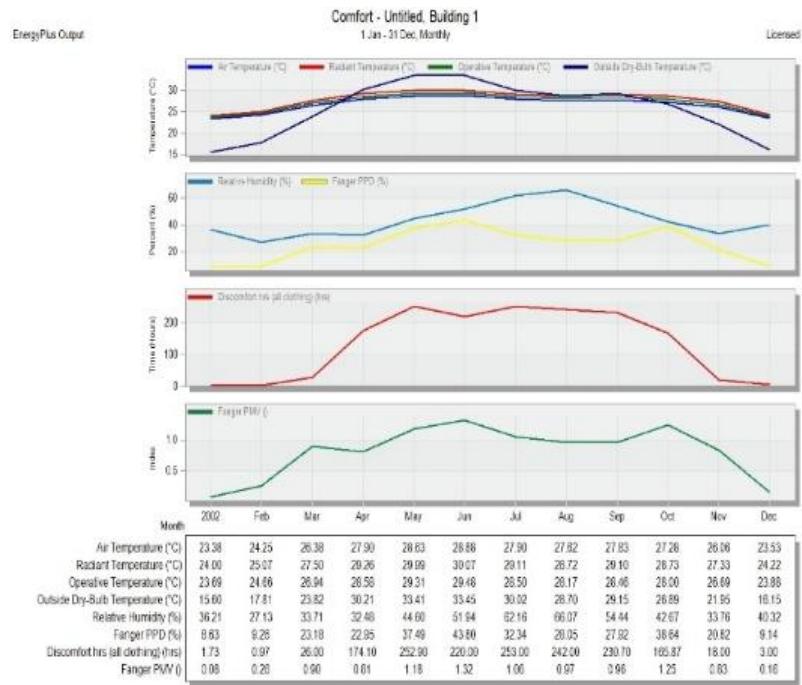


Fig 2. ECBC base case - The Comfort Graph (Monthly)

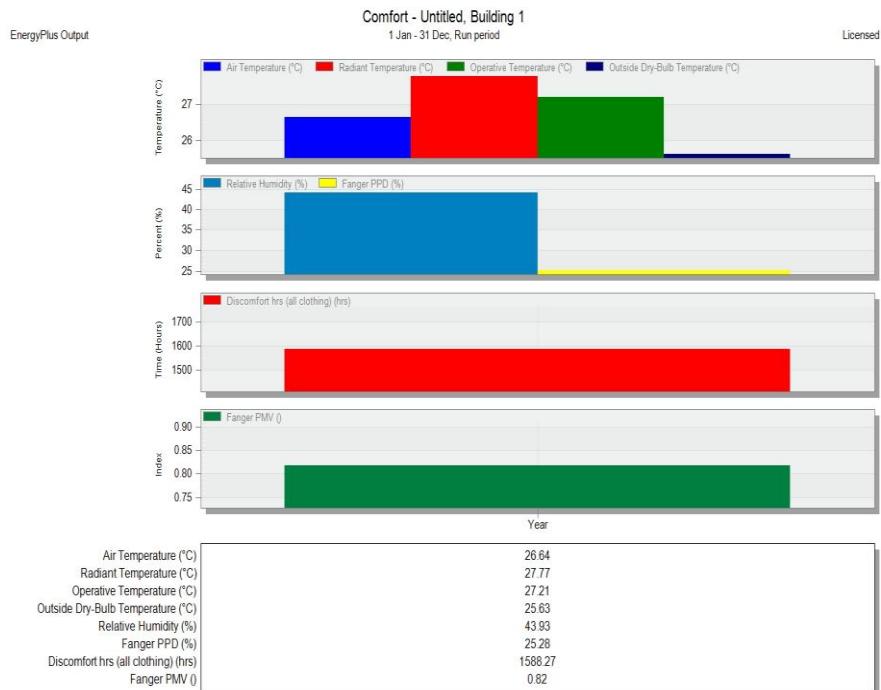
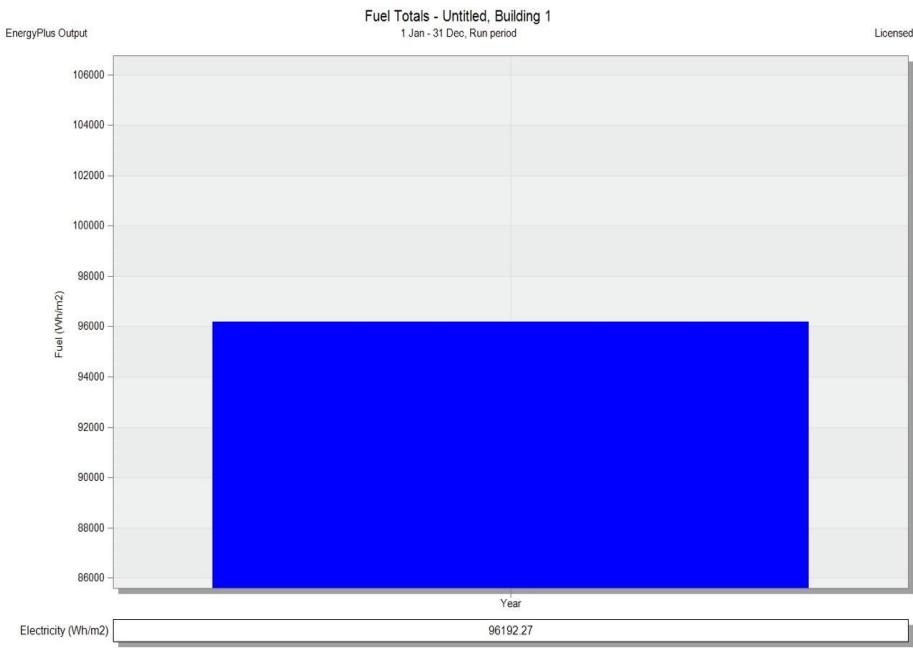
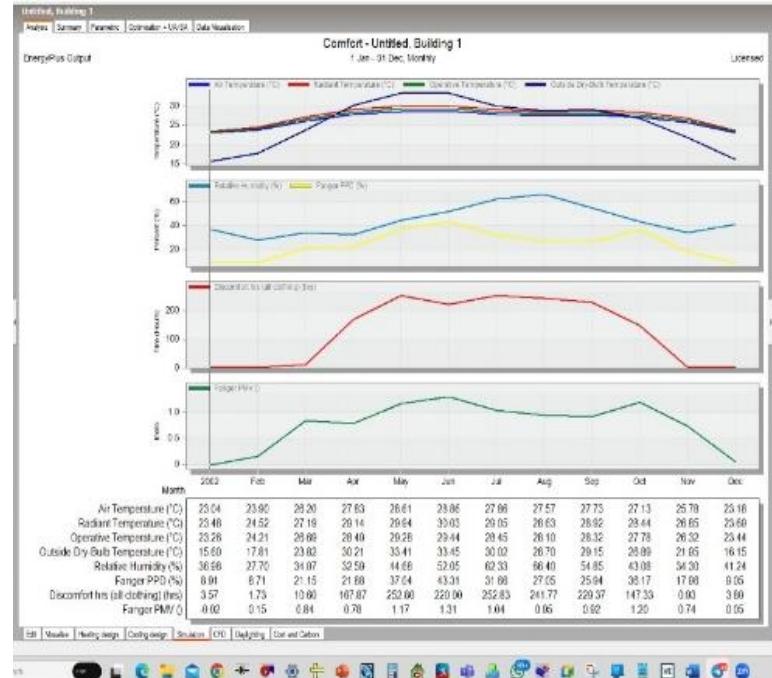



Fig 3. ECBC base case - Bar Chart for the Comfort (Yearly)

Fig 4. ECBC base case - Bar Chart for Energy Consumption (Yearly)


4.2. PTFE facade performance

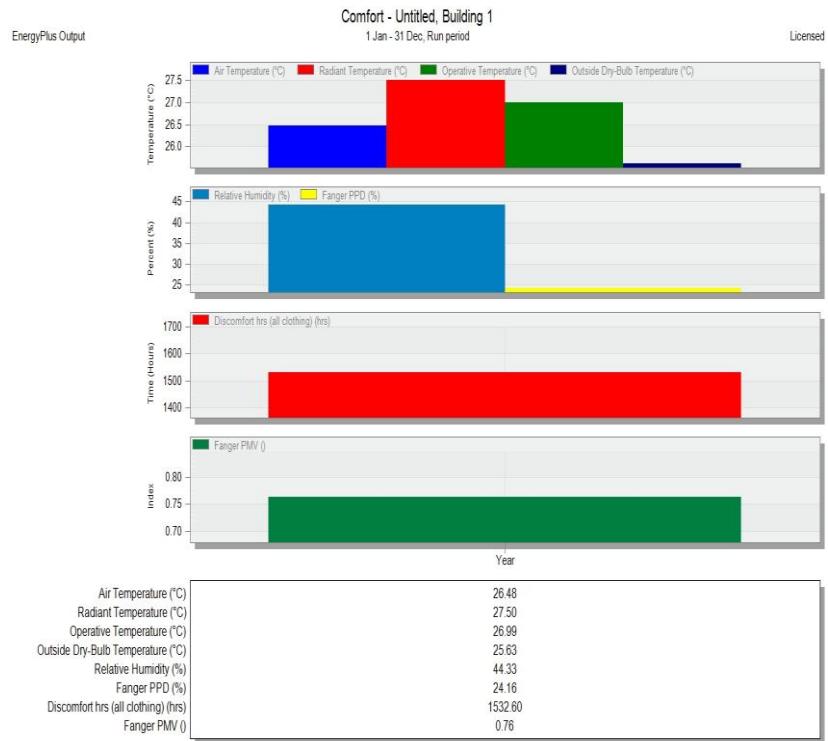
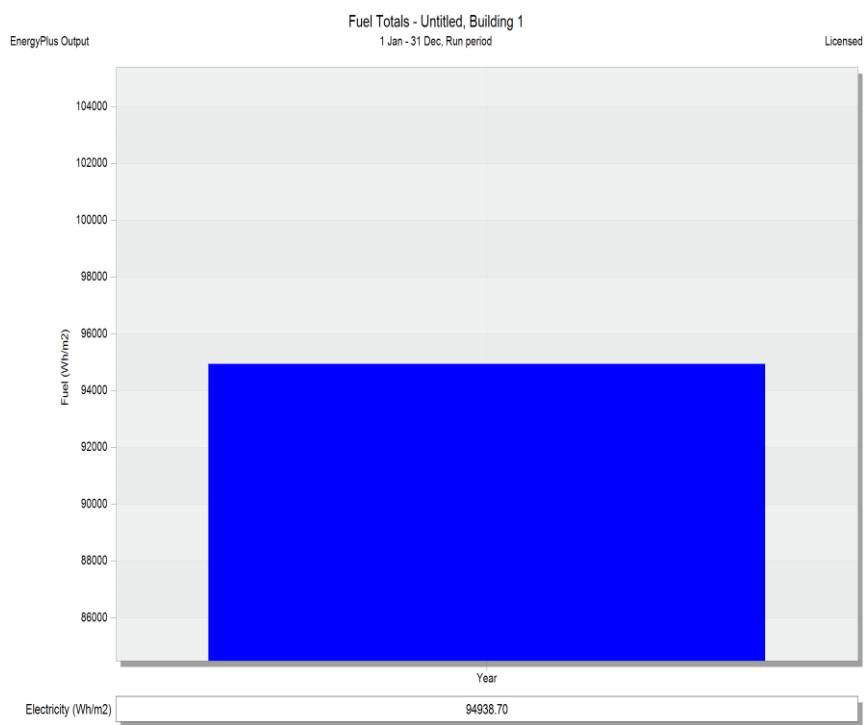


Incorporating a responsive PTFE facade led to a noticeable improvement over the base case. Yearly energy consumption dropped to 95 kWh/m², which is a 1.30% reduction in HVAC energy consumption relative to the base case. While this energy saving is modest in percentage terms, it reflects the PTFE system's ability to slightly reduce heat gains and losses by adapting to environmental factors. The discomfort hours decreased to 1532.6 hours, about 56 fewer hours than the base case. This indicates that the PTFE dynamic facade kept the building in the comfort range for more hours of the year, likely by mitigating extreme thermal conditions. The PPD improved to 24.16%, so fewer occupants are predicted to feel dissatisfied, and the PMV moved to +0.76, closer to the neutral comfort point, referring to Table 1.

Table 1. Base line Performance vs. PTFE Facade performance
(Annual values are given per square meter of floor area; PPD and PMV are comfort indices)

Facade Scenario	Annual HVAC Energy (kWh/m ²)	Discomfort Hours	PPD (%)	PMV
ECBC Base Case	96	1588.27	25.28	+0.82
PTFE Facade	95	1532.67	24.16	+0.76

The PTFE adaptive facade provided some enhancement in both energy efficiency and indoor environmental comfort, validating the concept that a dynamic envelope can outperform a static one. Figure 5, Figure 6 and Figure 7 show the monthly comfort graph, yearly bar chart for comfort and yearly bar chart for energy consumption respectively using PTFE on the façade as a shading material.

Fig 5. PTFE – The Comfort Graph (Monthly)**Fig 6. PTFE – Bar Chart for Comfort (Yearly)****Fig 7. PTFE – Bar Chart for Energy Consumption (Yearly)**

Table 2. Percentage savings of Base Case vs PTFE Facade Scenario

S.No	Material	Fuel totals (kWh/m ²)	Percentage Savings (%)
1	ECBC	96	Base Case
2	PTFE	95	1.30

By assessing the performance of adaptive façade systems with progressive material, PTFE and comparing it with the conventional ECBC compliant fixed façade, this paper extends the current research work. The objective was to analyse and evaluate their impact on building energy consumption and thermal comfort of the occupant. As per the simulation information, when a static base case façade is modified by a responsive PTFE façade, it can result in quantitative increase in thermal comfort metrics and energy efficiency.

The thermal comfort analysis indicated that the ECBC-compliant façade resulted in 1,588 discomfort hours, a Predicted Percentage of Dissatisfied (PPD) of 25.3%, and a Predicted Mean Vote (PMV) of +0.82. Whereas, the PTFE-based façade reduced discomfort hours to 1,532, improved the PPD to 24.16%, and the PMV to +0.76. These improved values exhibit PTFE's capability to enhance indoor thermal comfort while reducing the dependency on mechanical cooling systems.

PTFE's thermal performance benefits stem from its inherent material properties such as high thermal stability, flexibility, and durability under varying climate conditions. These features make it well-suited for use in adaptive façade systems, offering advantages in both energy efficiency and long-term maintenance. The lack of specific building guidelines and performance standards that address responsive façade systems restricts the extended usage of materials like PTFE, though it has been utilized in a few LEED accredited building, Al Bahar Towers. PTFE has basic properties that make it best suited for the application on responsive façade systems. This provides an improved thermal stability, durability and flexibility under extreme climate changes.

5. Conclusion

This study offers a performance analysis of conventional static building facades and the adaptive facades using PTFE. Under identical environmental and operational conditions, whole-building energy simulations were conducted on a conventional static facade (ECBC base case) against the adaptive facade scenario using PTFE. The analysis has been presented with a scientific character and backed by data concluded from the simulation studies of each façade material. The findings indicate that with better thermal comfort indicators, PPD 24.1% and PMV of +0.76, the PTFE kinetic façade outperformed the conventional materials by 1.3% lower reduction in HVAC energy consumption of 95 kWh/m² and the fewest discomfort hours 1,532. The ECBC-compliant static façade has the highest energy consumption 96 kWh/m² and occupant discomfort 1,588 hours, a PPD of 25.3%, and PMV of +0.82 underlining the advantages of adaptive façade systems. These quantitative analyses confirm that material choice in responsive facades significantly affects building energy performance and occupant comfort.

This comparative evaluation is a vital addition to the existing literature within the academic domain. As the need for a comfortable built environment rises on account of global temperature rise, adaptive kinetic facades thoughtfully designed with selected unique and innovative materials will be of a valued significance. The potential of the PTFE material in Kinetic facades may be exemplary, offering dual benefits, dynamic performance modulation, and consistent thermal performance with increased lifespan. This material is one of the most efficient contributors to the sustainable urban built environment and defines a progressive approach to develop an energy-efficient building. This material represents an ideal response to the concerns related to the sustainable urban growth and exhibits a revolutionary approach to advancing the development of energy-efficient buildings. This material can be essential in improving the research of the future generation of adaptive and responsive façade systems by actively fostering thermal control, long term endurance and system sustainability. In conclusion, the integration of PTFE material into adaptive façades offers a promising pathway to enhance energy efficiency, occupant comfort, and building envelope durability. This research lays the groundwork for future exploration of novel materials in kinetic façade technology and sustainable building design. Additionally, future research can examine the scalability and economic efficiency of PTFE polymer in large scale building projects.

Acknowledgement

I would like to thank my supervisor and faculty of design, Manipal University Jaipur for providing the necessary support for this research. I also acknowledge the contributions of colleagues and reviewers whose insights helped improve the quality of this work.

References

- [1] G. Pérez *et al.*, “Innovative approaches to thermochromic materials for adaptive building envelopes,” *J. Phys.: Conf. Ser.*, vol. 2069, no. 1, p. 012132, Nov. 2021, doi: 10.1088/1742-6596/2069/1/012132.
- [2] S. Verma, “ADAPTIVE BUILDING ENVELOPE,” *Open Access*, vol. 02, no. 05, 2023.
- [3] M. Milardi, “Adaptive Building Technologies for Building Envelopes Under Climate Change Conditions,” in *Technological Imagination in the Green and Digital Transition*, E. Arbizzani, E. Cangelli, C. Clemente, F. Cumò, F. Giofrè, A. M. Giovenale, M. Palme, and S. Paris, Eds., in The Urban Book Series. , Cham: Springer International Publishing, 2023, pp. 695–702. doi: 10.1007/978-3-031-29515-7_62.
- [4] G. Mutlu Avinç, S. N. Koç, and S. Arslan Selçuk, “Biomimetic Facade Design Proposal to Improving Thermal Comfort in Hot Climate Region,” *Int J. of BES*, vol. 11, no. 2, pp. 27–39, May 2024, doi: 10.11113/ijbes.v11.n2.1226.
- [5] “Composite Material Engineering Analysis Based on Circular Economy for the Conservation of Interior Ornaments and Traditional Balinese Architecture | Jaya | International Journal of Engineering, Science and Information Technology.” Accessed: Jul. 01, 2025. [Online]. Available: <https://www.ijesty.org/index.php/ijesty/article/view/919/493>
- [6] “Energy Conservation Building Code (ECBC) | BUREAU OF ENERGY EFFICIENCY, Government of India, Ministry of Power.” Accessed: Apr. 22, 2025. [Online]. Available: <https://beeindia.gov.in/en/energy-conservation-building-code-ecbc>

[7] S. J. Emmerich *et al.*, "ASHRAE STANDARDS COMMITTEE 2017–2018".

[8] "2019 Update of Standard 90.1 | ashrae.org." Accessed: Apr. 18, 2025. [Online]. Available: <https://www.ashrae.org/news/hvacindustry/2019-update-of-standard-90-1>

[9] "Application Guide for EMS".

[10] E. Borkowski, A. Luna-Navarro, M. Michael, M. Overend, D. Rovas, and R. Raslan, "Empirical validation of co-simulation models for adaptive building envelopes," *Journal of Facade Design and Engineering*, vol. 10, no. 1, pp. 119–154, Dec. 2022, doi: 10.47982/fde.2022.1.06.

[11] S. Attia, S. Bilir, T. Safy, C. Struck, R. Loonen, and F. Goia, "Current trends and future challenges in the performance assessment of adaptive façade systems," *Energy and Buildings*, vol. 179, pp. 165–182, Nov. 2018, doi: 10.1016/j.enbuild.2018.09.017.

[12] A. Luna-Navarro, I. Gaetani, A. Law, F. Anselmo, and M. Overend, "The influence of occupant behaviour on the energy performance of single office space with adaptive facades: simulation versus measured data," presented at the 2021 Building Simulation Conference, Sep. 2021. doi: 10.26868/25222708.2021.30525.

[13] E. Borkowski, M. Donato, G. Zemella, D. Rovas, and R. Raslan, "Optimisation Of Controller Parameters For Adaptive Building Envelopes Through A Co-Simulation Interface: A Case Study," presented at the Building Simulation 2019, Rome, Italy, pp. 1372–1379. doi: 10.26868/25222708.2019.210517.

[14] R. C. G. M. Loonen, F. Favoino, J. L. M. Hensen, and M. Overend, "Review of current status, requirements and opportunities for building performance simulation of adaptive facades," *Journal of Building Performance Simulation*, vol. 10, no. 2, pp. 205–223, Mar. 2017, doi: 10.1080/19401493.2016.1152303.

[15] H. Madsen *et al.*, "Thermal Performance Characterization using Time Series Data - IEA EBC Annex 58 Guidelines," Technical University of Denmark, Report, 2015.

[16] E. Taveres-Cachat, F. Favoino, R. Loonen, and F. Goia, "Ten questions concerning co-simulation for performance prediction of advanced building envelopes," *Building and Environment*, vol. 191, p. 107570, Mar. 2021, doi: 10.1016/j.buildenv.2020.107570.

[17] E. Taveres-Cachat and F. Goia, "Co-simulation and validation of the performance of a highly flexible parametric model of an external shading system," *Building and Environment*, vol. 182, p. 107111, Sep. 2020, doi: 10.1016/j.buildenv.2020.107111.

[18] R. N. Faragallah, "Biomimetic Approaches for Adaptive Building Envelopes: Applications and Design Considerations," *cea*, vol. 9, no. 7, pp. 2464–2475, Dec. 2021, doi: 10.13189/cea.2021.090731.

[19] "State of the Art of Technologies in Adaptive Dynamic Building Envelopes (ADBEs)." Accessed: Jul. 01, 2025. [Online]. Available: <https://www.mdpi.com/1996-1073/15/3/829>

[20] S. L. Madorsky and S. Stra, "w THERMAL DEGRADATION STUDIES OF t POLYMERS AT HIGH TEMPERATURES".

[21] R. Wang, G. Xu, and Y. He, "Structure and properties of polytetrafluoroethylene (PTFE) fibers," *e-Polymers*, vol. 17, no. 3, pp. 215–220, May 2017, doi: 10.1515/epoly-2016-0059.

[22] J. E. Marshall *et al.*, "On the Solubility and Stability of Polyvinylidene Fluoride," *Polymers*, vol. 13, no. 9, Art. no. 9, Jan. 2021, doi: 10.3390/polym13091354.

[23] S. Salunkhe and P. Chandankar, "Friction and Wear Analysis of PTFE Composite Materials," in *Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)*, U. Chandrasekhar, L.-J. Yang, and S. Gowthaman, Eds., in Lecture Notes in Mechanical Engineering. , Singapore: Springer Singapore, 2019, pp. 415–425. doi: 10.1007/978-981-13-2718-6_40.

[24] I. Kapitonova, N. Lazareva, P. Tarasova, A. Okhlopkova, S. Laukkonen, and V. Mukhin, "Morphology Analysis of Friction Surfaces of Composites Based on PTFE and Layered Silicates," *Polymers*, vol. 14, no. 21, Art. no. 21, Jan. 2022, doi: 10.3390/polym14214658.

[25] K. Mazur, A. Gądek-Moszczak, A. Liber-Kneć, and S. Kuciel, "Mechanical Behavior and Morphological Study of Polytetrafluoroethylene (PTFE) Composites under Static and Cyclic Loading Condition," *Materials*, vol. 14, no. 7, p. 1712, Mar. 2021, doi: 10.3390/ma14071712.

[26] L. L. Radulovic and Z. W. Wojcinski, "PTFE (Polytetrafluoroethylene; Teflon®)," in *Encyclopedia of Toxicology (Third Edition)*, P. Wexler, Ed., Oxford: Academic Press, 2014, pp. 1133–1136. doi: 10.1016/B978-0-12-386454-3.00970-2.

[27] Yingying Zhang, Qilin Zhang, Chuanzhi Zhou, and Ying Zhou, "Mechanical properties of PTFE coated fabrics," *Journal of Reinforced Plastics and Composites*, vol. 29, no. 24, pp. 3624–3630, Dec. 2010, doi: 10.1177/0731684410378542.

[28] M. P. Ansell, C. A. S. Hill, and C. Allgood, "Architectural PTFE-Coated Glass Fabrics—Their Structure and Limitations," *Textile Research Journal*, vol. 53, no. 11, pp. 692–700, Nov. 1983, doi: 10.1177/004051758305301110.

[29] "Why choose PTFE Membrane Structures? | MakMax Taiyo Middle East." Accessed: May 18, 2025. [Online]. Available: <https://taiyomc-me.com/fabrics/ptfe/>

[30] J. Ahmad and M. G. Niasar, "Aging Behavior of PEEK, PTFE, and PI Insulation Materials Under Thermal Oxidative and Humid Conditions for Aerospace Applications," *Journal of Applied Polymer Science*, vol. 142, no. 19, p. e56858, 2025, doi: 10.1002/app.56858.

[31] J. M. Cremers, "ENERGY SAVING DESIGN OF MEMBRANE BUILDING ENVELOPES".

[32] L. Chi, Y. Qian, B. Zhang, Z. Zhang, and Z. Jiang, "Surface engineering and self-cleaning properties of the novel TiO₂/PAA/PTFE ultrafiltration membranes," *Appl Petrochem Res*, vol. 6, no. 3, pp. 225–233, Sep. 2016, doi: 10.1007/s13203-016-0158-x.

[33] "Selecting the Right Architectural Membrane for Your Project | Novum Structures." Accessed: May 18, 2025. [Online]. Available: https://novumstructures.com/news_and_insights/selecting-the-right-architectural-membrane-for-your-project/

[34] A. Drobizhev, J. Reiten, V. Singh, and Y. G. Kolomensky, "Thermal conductivity measurements of PTFE and Al₂O₃ ceramic at sub-Kelvin temperatures," *Cryogenics*, vol. 85, pp. 63–70, Jul. 2017, doi: 10.1016/j.cryogenics.2017.05.008.

[35] R. P. M. Developers, "What Is K, U, R, and C-Value? | Thermal Insulation," Firwin Corporation. Accessed: May 18, 2025. [Online]. Available: <https://www.firwin.com/blog/k-u-r-c-value-thermal-insulation/>

[36] A. A. Waseef and B. N. El-Mowafy, "TOWARDS A NEW CLASSIFICATION FOR RESPONSIVE KINETIC FACADES".

[37] G. Jamilu, A. Abdou, and M. Asif, "Dynamic facades for sustainable buildings: A review of classification, applications, prospects and challenges," *Energy Reports*, vol. 11, pp. 5999–6014, Jun. 2024, doi: 10.1016/j.egyr.2024.05.047.

[38] "Research thesis on Prototype Development of Responsive Kinetic Facade for controlled Solar Gain," Issuu. Accessed: May 18, 2025. [Online]. Available: https://issuu.com/dhruvin_kataria/docs/29_dhruvin_kataria_final_draft

[39] A. Alawaysh, Taleb ,Hanana, and M. and Kayed, "The impact of a kinetic façade on the lighting performance and energy efficiency of a public building: the case of Dubai frame," *International Journal of Sustainable Energy*, vol. 42, no. 1, pp. 1317–1363, Dec. 2023, doi: 10.1080/14786451.2023.2248514.

[40] S. Attia, "Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE," in *Qatar Green Building Conference 2016 & The Action*, Doha, Qatar,: Hamad bin Khalifa University Press (HBKU Press), 2016. doi: 10.5339/qproc.2016.qgbc.8.

[41] L. Q. A. Rawi and K. A. Wahhab, "Simulation of The Application of an Adaptive Smart Envelope to an Existing Building in Rhinoceros Grasshopper," *Al-Nahrain Journal for Engineering Sciences*, vol. 25, no. 3, Art. no. 3, Nov. 2022, doi: 10.29194/NJES.2503A012.

[42] M. Maizuar *et al.*, "Effect of Carbon Nanotubes and Graphene Oxide on the Hydration Characteristics and Compressive Strength of Cement Mortar with High Volume Fly Ash," *Int. J. Eng. Scie. and Inform. Technology.*, vol. 5, no. 1, pp. 93–100, Dec. 2024, doi: 10.52088/ijesty.v5i1.648.

[43] Y. R. Alkhaly, Y. Chandra, and L. Ayu Widari, "Experimental Study on Utilizing Polyethylene Terephthalate Waste as a Substitute for Coarse Aggregate in the Production of Lightweight Concrete," *Int. J. Eng. Scie. and Inform. Technology.*, vol. 3, no. 2, pp. 17–24, Apr. 2023, doi: 10.52088/ijesty.v3i2.436.

[44] P. Chen and H. Tang, "A Framework for Adaptive Façade Optimization Design Based on Building Envelope Performance Characteristics," *Buildings*, vol. 14, no. 9, Art. no. 9, Sep. 2024, doi: 10.3390/buildings14092646.

[45] F. Favoino, Ed., *Building performance simulation and characterisation of adaptive facades adaptive facade network*. Delft: TU Delft Open, 2018.

[46] H. P. Tuniki, A. Jurelionis, R. F. Rupp, R. Valančius, and G. Bekö, "Thermal Comfort and Adaptive Occupant Behaviour in Open Plan Offices in India and Lithuania," *Buildings*, vol. 15, no. 5, Art. no. 5, Jan. 2025, doi: 10.3390/buildings15050766.

[47] Y. Pan *et al.*, "Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies," *Advances in Applied Energy*, vol. 10, p. 100135, Jun. 2023, doi: 10.1016/j.adapen.2023.100135.

[48] Tanzeel N.M. Adam, "Evaluation of Adaptive Facades within Context of Sustainable Building in Northern Cyprus," Mar. 2023, doi: 10.5281/ZENODO.7781064.

[49] M. Azima and S. Seyis, "Evaluating the impact of building envelope on energy performance: Cooling analyses," *Journal of Construction Engineering, Management & Innovation*, 2022, Accessed: Apr. 18, 2025. [Online]. Available: [https://www.researchgate.net/profile/SenemSeyis/publication/359714427_Evaluating_the_impact_of_building_envelope_on_energy-performance-Cooling_analyses/links/62501566d726197cf46b095/Evaluating-the-impact-of-building-envelope-on-energy-performance-Cooling-analyses.pdf](https://www.researchgate.net/profile/SenemSeyis/publication/359714427_Evaluating_the_impact_of_building_envelope_on_energy_performance-Cooling_analyses/links/62501566d726197cf46b095/Evaluating-the-impact-of-building-envelope-on-energy-performance-Cooling-analyses.pdf)

[50] S. Mirrahimi, M. F. Mohamed, L. C. Haw, N. L. N. Ibrahim, W. F. M. Yusoff, and A. Aflaki, "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate," *Renewable and Sustainable Energy Reviews*, vol. 53, pp. 1508–1519, Jan. 2016, doi: 10.1016/j.rser.2015.09.055.

[51] M. Juaristi and A. Monge-Barrio, "Adaptive façades in temperate climates. An in-use assessment of an office building," 2016, doi: 10.13140/RG.2.2.29634.99527.

[52] A. A. Kaushal, P. Anand, and B. H. Aithal, "Assessment of the Impact of Building Orientation on PMV and PPD in Naturally Ventilated Rooms During Summers in Warm and Humid Climate of Kharagpur, India," in *Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation*, Istanbul Turkey: ACM, Nov. 2023, pp. 528–533. doi: 10.1145/3600100.3627034.

[53] P. Ole Fanger and J. Toftum, "Extension of the PMV model to non-air-conditioned buildings in warm climates," *Energy and Buildings*, vol. 34, no. 6, pp. 533–536, Jul. 2002, doi: 10.1016/S0378-7788(02)00003-8.

[54] R. de Dear and G. S. Brager, "Thermal Adaptation in the Built Environment: a Literature Review," 1998, doi: 10.1016/S0378-7788(97)00053-4.

[55] J. Van Hoof, "Forty years of Fanger's model of thermal comfort: comfort for all?Abstract," *Indoor Air*, vol. 18, no. 3, pp. 182–201, 2008, doi: 10.1111/j.1600-0668.2007.00516.x.

[56] R. Yao, J. Liu, and B. Li, "Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms," *Applied Energy*, vol. 87, no. 3, pp. 1015–1022, Mar. 2010, doi: 10.1016/j.apenergy.2009.09.028.